Role of FGF Receptors and Their Pathways in Adrenocortical Tumors and Possible Therapeutic Implications

Iuliu Sbiera, Stefan Kircher, Barbara Altieri, Kerstin Lenz, Constanze Hantel, Martin Fassnacht, Silviu Sbiera, Matthias Kroiss, Iuliu Sbiera, Stefan Kircher, Barbara Altieri, Kerstin Lenz, Constanze Hantel, Martin Fassnacht, Silviu Sbiera, Matthias Kroiss

Abstract

Adrenocortical carcinoma (ACC) is a rare endocrine malignancy and treatment of advanced disease is challenging. Clinical trials with multi-tyrosine kinase inhibitors in the past have yielded disappointing results. Here, we investigated fibroblast growth factor (FGF) receptors and their pathways in adrenocortical tumors as potential treatment targets. We performed real-time RT-PCR of 93 FGF pathway related genes in a cohort of 39 fresh frozen benign and malignant adrenocortical, 9 non-adrenal tissues and 4 cell lines. The expression of FGF receptors was validated in 166 formalin-fixed paraffin embedded (FFPE) tissues using RNA in situ hybridization (RNAscope) and correlated with clinical data. In malignant compared to benign adrenal tumors, we found significant differences in the expression of 16/94 FGF receptor pathway related genes. Genes involved in tissue differentiation and metastatic spread through epithelial to mesechymal transition were most strongly altered. The therapeutically targetable FGF receptors 1 and 4 were upregulated 4.6- and 6-fold, respectively, in malignant compared to benign adrenocortical tumors, which was confirmed by RNAscope in FFPE samples. High expression of FGFR1 and 4 was significantly associated with worse patient prognosis in univariate analysis. After multivariate adjustment for the known prognostic factors Ki-67 and ENSAT tumor stage, FGFR1 remained significantly associated with recurrence-free survival (HR=6.10, 95%CI: 1.78 - 20.86, p=0.004) and FGFR4 with overall survival (HR=3.23, 95%CI: 1.52 - 6.88, p=0.002). Collectively, our study supports a role of FGF pathways in malignant adrenocortical tumors. Quantification of FGF receptors may enable a stratification of ACC for the use of FGFR inhibitors in future clinical trials.

Keywords: FGF-pathway; FGFR; RNA Expression; RNAScope; adrenocortical tumors; normal adrenal glands; patient survival; unsupervised clustering.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Sbiera, Kircher, Altieri, Lenz, Hantel, Fassnacht, Sbiera and Kroiss.

Figures

Figure 1
Figure 1
An example of RNAScope signal detection using the ImageScope software. The first image (A) is the original image; in the square is the selected area for detection. (B) the same image with the detected mRNA molecules marked in red by the software, while (C) is the same image with the detected cells marked in blue (nuclei) and yellow (cytoplasm).
Figure 2
Figure 2
Unsupervised clustering of RT-PCR data of the FGF pathway genes. Unsupervised hierarchical matrix based on FGF pathway expression. On the left side is a graphical representation of the log 2 transformed normalized expression data arranged vertically by tissue name, and horizontally by gene name in the order that they were arranged on the PCR plate. To the right side is the data rearranged through the unsupervised similarity matrix clustering. The colored bar under the tissue names is encoding the different types of tissues analyzed: NAG=normal adrenal glands, ACA, adrenocortical adenomas; ACC1+2, ACC in ENSAT stages I and II; ACC3, ACC in ENSAT stage III; ACC4, ACC in ENSAT stage IV; EPTN, normal (non-neoplastic) classical epithelial tissues; EPTC, malignant tumors of classical epithelial tissues/carcinomas; MESC, malignant tumors of classical mesenchymal tissues/sarcomas and CELL, cell-lines.
Figure 3
Figure 3
Examples of expression RNAScope staining in ACC. (A) an example of house keeping gene, PPIB, staining, while (B–D) show various levels of FGFR4 expression, from low to high.
Figure 4
Figure 4
Expression of FGF receptors 1, 2 and 4 in adrenocortical tissues as assessed by RNAScope. Expression levels in ACA vs ACC (A), in ACC ENSAT stages 1 + 2 vs 3 + 4 (B) and in ACC primary tumor samples vs local or distant recurrences (C). Statistical significance: *p<0.05, **p<0.01, ***p<0.001.
Figure 5
Figure 5
Association between expression of FGF receptors 1, 2 and 4 with patient survival. (A, C, E) overall survival (B, D, F) recurrence-free survival. *p < 0.05 and **p < 0.01.

References

    1. Fassnacht M, Dekkers OM, Else T, Baudin E, Berruti A, de Krijger R, et al. . European Society of Endocrinology Clinical Practice Guidelines on the Management of Adrenocortical Carcinoma in Adults, in Collaboration With the European Network for the Study of Adrenal Tumors. Eur J Endocrinol (2018) 179(4):G1–G46. doi: 10.1530/EJE-18-0608
    1. Fassnacht M, Assie G, Baudin E, Eisenhofer G, de la Fouchardiere C, Haak HR, et al. . Adrenocortical Carcinomas and Malignant Phaeochromocytomas: ESMO-EURACAN Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann Oncol (2020) 31(11):1476–90. doi: 10.1016/j.annonc.2020.08.2099
    1. Terzolo M, Angeli A, Fassnacht M, Daffara F, Tauchmanova L, Conton PA, et al. . Adjuvant Mitotane Treatment for Adrenocortical Carcinoma. N Engl J Med (2007) 356(23):2372–80. doi: 10.1056/NEJMoa063360
    1. Berruti A, Fassnacht M, Baudin E, Hammer G, Haak H, Leboulleux S, et al. . Adjuvant Therapy in Patients With Adrenocortical Carcinoma: A Position of an International Panel. J Clin Oncol (2010) 28(23):e401–2; author reply e3. doi: 10.1200/JCO.2009.27.5958
    1. Fassnacht M, Terzolo M, Allolio B, Baudin E, Haak H, Berruti A, et al. . Combination Chemotherapy in Advanced Adrenocortical Carcinoma. N Engl J Med (2012) 366(23):2189–97. doi: 10.1056/NEJMoa1200966
    1. Soon PS, Gill AJ, Benn DE, Clarkson A, Robinson BG, McDonald KL, et al. . Microarray Gene Expression and Immunohistochemistry Analyses of Adrenocortical Tumors Identify IGF2 and Ki-67 as Useful in Differentiating Carcinomas From Adenomas. Endocr Relat Cancer (2009) 16(2):573–83. doi: 10.1677/ERC-08-0237
    1. Altieri B, Colao A, Faggiano A. The Role of Insulin-Like Growth Factor System in the Adrenocortical Tumors. Minerva Endocrinol (2019) 44(1):43–57. doi: 10.23736/S0391-1977.18.02882-1
    1. Fassnacht M, Berruti A, Baudin E, Demeure MJ, Gilbert J, Haak H, et al. . Linsitinib (OSI-906) Versus Placebo for Patients With Locally Advanced or Metastatic Adrenocortical Carcinoma: A Double-Blind, Randomised, Phase 3 Study. Lancet Oncol (2015) 16(4):426–35. doi: 10.1016/S1470-2045(15)70081-1
    1. Xu YZ, Zhu Y, Shen ZJ, Sheng JY, He HC, Ma G, et al. . Significance of Heparanase-1 and Vascular Endothelial Growth Factor in Adrenocortical Carcinoma Angiogenesis: Potential for Therapy. Endocrine (2011) 40(3):445–51. doi: 10.1007/s12020-011-9502-1
    1. Berruti A, Sperone P, Ferrero A, Germano A, Ardito A, Priola AM, et al. . Phase II Study of Weekly Paclitaxel and Sorafenib as Second/Third-Line Therapy in Patients With Adrenocortical Carcinoma. Eur J Endocrinol (2012) 166(3):451–8. doi: 10.1530/EJE-11-0918
    1. Kroiss M, Reuss M, Kuhner D, Johanssen S, Beyer M, Zink M, et al. . Sunitinib Inhibits Cell Proliferation and Alters Steroidogenesis by Down-Regulation of HSD3B2 in Adrenocortical Carcinoma Cells. Front Endocrinol (Lausanne) (2011) 2:27. doi: 10.3389/fendo.2011.00027
    1. Kroiss M, Quinkler M, Johanssen S, van Erp NP, Lankheet N, Pollinger A, et al. . Sunitinib in Refractory Adrenocortical Carcinoma: A Phase II, Single-Arm, Open-Label Trial. J Clin Endocrinol Metab (2012) 97(10):3495–503. doi: 10.1210/jc.2012-1419
    1. Kroiss M, Megerle F, Kurlbaum M, Zimmermann S, Wendler J, Jimenez C, et al. . Objective Response and Prolonged Disease Control of Advanced Adrenocortical Carcinoma With Cabozantinib. J Clin Endocrinol Metab (2020) 105(5):1461–8. doi: 10.1210/clinem/dgz318
    1. Altieri B, Ronchi CL, Kroiss M, Fassnacht M. Next-Generation Therapies for Adrenocortical Carcinoma. Best Pract Res Clin Endocrinol Metab (2020) 34(3):101434. doi: 10.1016/j.beem.2020.101434
    1. Lieu C, Heymach J, Overman M, Tran H, Kopetz S. Beyond VEGF: Inhibition of the Fibroblast Growth Factor Pathway and Antiangiogenesis. Clin Cancer Res (2011) 17(19):6130–9. doi: 10.1158/1078-0432.CCR-11-0659
    1. Itoh N, Ornitz DM. Fibroblast Growth Factors: From Molecular Evolution to Roles in Development, Metabolism and Disease. J Biochem (2011) 149(2):121–30. doi: 10.1093/jb/mvq121
    1. Ornitz DM, Itoh N. The Fibroblast Growth Factor Signaling Pathway. Wiley Interdiscip Rev Dev Biol (2015) 4(3):215–66. doi: 10.1002/wdev.176
    1. Itoh N. The Fgf Families in Humans, Mice, and Zebrafish: Their Evolutional Processes and Roles in Development, Metabolism, and Disease. Biol Pharm Bull (2007) 30(10):1819–25. doi: 10.1248/bpb.30.1819
    1. Thisse B, Thisse C. Functions and Regulations of Fibroblast Growth Factor Signaling During Embryonic Development. Dev Biol (2005) 287(2):390–402. doi: 10.1016/j.ydbio.2005.09.011
    1. Haugsten EM, Wiedlocha A, Olsnes S, Wesche J. Roles of Fibroblast Growth Factor Receptors in Carcinogenesis. Mol Cancer Res (2010) 8(11):1439–52. doi: 10.1158/1541-7786.MCR-10-0168
    1. Turner N, Grose R. Fibroblast Growth Factor Signalling: From Development to Cancer. Nat Rev Cancer (2010) 10(2):116–29. doi: 10.1038/nrc2780
    1. Korc M, Friesel RE. The Role of Fibroblast Growth Factors in Tumor Growth. Curr Cancer Drug Targets (2009) 9(5):639–51. doi: 10.2174/156800909789057006
    1. Capozzi M, De Divitiis C, Ottaiano A, von Arx C, Scala S, Tatangelo F, et al. . Lenvatinib, a Molecule With Versatile Application: From Preclinical Evidence to Future Development in Anti-Cancer Treatment. Cancer Manag Res (2019) 11:3847–60. doi: 10.2147/CMAR.S188316
    1. Tan FH, Putoczki TL, Stylli SS, Luwor RB. Ponatinib: A Novel Multi-Tyrosine Kinase Inhibitor Against Human Malignancies. Onco Targets Ther (2019) 12:635–45. doi: 10.2147/OTT.S189391
    1. Bedrose S, Miller KC, Altameemi L, Ali MS, Nassar S, Garg N, et al. . Combined Lenvatinib and Pembrolizumab as Salvage Therapy in Advanced Adrenal Cortical Carcinoma. J Immunother Cancer (2020) 8(2):e001009. doi: 10.1136/jitc-2020-001009
    1. Cha Y, Kim HP, Lim Y, Han SW, Song SH, Kim TY. FGFR2 Amplification Is Predictive of Sensitivity to Regorafenib in Gastric and Colorectal Cancers In Vitro. Mol Oncol (2018) 12(7):993–1003. doi: 10.1002/1878-0261.12194
    1. Pearson A, Smyth E, Babina IS, Herrera-Abreu MT, Tarazona N, Peckitt C, et al. . High-Level Clonal FGFR Amplification and Response to FGFR Inhibition in a Translational Clinical Trial. Cancer Discov (2016) 6(8):838–51. doi: 10.1158/-15-1246
    1. Sanchez-Guixe M, Hierro C, Jimenez J, Viaplana C, Villacampa G, Monelli E, et al. . High FGFR1-4 mRNA Expression Levels Correlate With Response to Selective FGFR Inhibitors in Breast Cancer. Clin Cancer Res (2021). doi: 10.1158/1078-0432.CCR-21-1810
    1. Gospodarowicz D, Handley HH. Stimulation of Division of Y1 Adrenal Cells by a Growth Factor Isolated From Bovine Pituitary Glands. Endocrinology (1975) 97(1):102–7. doi: 10.1210/endo-97-1-102
    1. Gospodarowicz D, Ill CR, Hornsby PJ, Gill GN. Control of Bovine Adrenal Cortical Cell Proliferation by Fibroblast Growth Factor. Lack of Effect of Epidermal Growth Factor. Endocrinology (1977) 100(4):1080–9. doi: 10.1210/endo-100-4-1080
    1. Boulle N, Gicquel C, Logie A, Christol R, Feige JJ, Le Bouc Y. Fibroblast Growth Factor-2 Inhibits the Maturation of Pro-Insulin-Like Growth Factor-II (Pro-IGF-II) and the Expression of Insulin-Like Growth Factor Binding Protein-2 (IGFBP-2) in the Human Adrenocortical Tumor Cell Line NCI-H295R. Endocrinology (2000) 141(9):3127–36. doi: 10.1210/endo.141.9.7632
    1. Haase M, Schott M, Bornstein SR, Malendowicz LK, Scherbaum WA, Willenberg HS. CITED2 is Expressed in Human Adrenocortical Cells and Regulated by Basic Fibroblast Growth Factor. J Endocrinol (2007) 192(2):459–65. doi: 10.1677/JOE-06-0083
    1. Feige JJ, Baird A. Growth Factor Regulation of Adrenal Cortex Growth and Function. Prog Growth Factor Res (1991) 3(2):103–13. doi: 10.1016/s0955-2235(05)80002-x
    1. Guasti L, Candy Sze WC, McKay T, Grose R, King PJ. FGF Signalling Through Fgfr2 Isoform IIIb Regulates Adrenal Cortex Development. Mol Cell Endocrinol (2013) 371(1-2):182–8. doi: 10.1016/j.mce.2013.01.014
    1. Haase M, Thiel A, Scholl UI, Ashmawy H, Schott M, Ehlers M. Subcellular Localization of Fibroblast Growth Factor Receptor Type 2 and Correlation With CTNNB1 Genotype in Adrenocortical Carcinoma. BMC Res Notes (2020) 13(1):282. doi: 10.1186/s13104-020-05110-5
    1. Zheng S, Cherniack AD, Dewal N, Moffitt RA, Danilova L, Murray BA, et al. . Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma. Cancer Cell (2016) 29(5):723–36. doi: 10.1016/j.ccell.2016.04.002
    1. Krook MA, Reeser JW, Ernst G, Barker H, Wilberding M, Li G, et al. . Fibroblast Growth Factor Receptors in Cancer: Genetic Alterations, Diagnostics, Therapeutic Targets and Mechanisms of Resistance. Br J Cancer (2021) 124(5):880–92. doi: 10.1038/s41416-020-01157-0
    1. Hantel C, Shapiro I, Poli G, Chiapponi C, Bidlingmaier M, Reincke M, et al. . Targeting Heterogeneity of Adrenocortical Carcinoma: Evaluation and Extension of Preclinical Tumor Models to Improve Clinical Translation. Oncotarget (2016) 7(48):79292–304. doi: 10.18632/oncotarget.12685
    1. Kiseljak-Vassiliades K, Zhang Y, Bagby SM, Kar A, Pozdeyev N, Xu M, et al. . Development of New Preclinical Models to Advance Adrenocortical Carcinoma Research. Endocr Relat Cancer (2018) 25(4):437–51. doi: 10.1530/ERC-17-0447
    1. Adam P, Kircher S, Sbiera I, Koehler VF, Berg E, Knosel T, et al. . FGF-Receptors and PD-L1 in Anaplastic and Poorly Differentiated Thyroid Cancer: Evaluation of the Preclinical Rationale. Front Endocrinol (Lausanne) (2021) 12:712107. doi: 10.3389/fendo.2021.712107
    1. Fassnacht M, Johanssen S, Quinkler M, Bucsky P, Willenberg HS, Beuschlein F, et al. . Limited Prognostic Value of the 2004 International Union Against Cancer Staging Classification for Adrenocortical Carcinoma: Proposal for a Revised TNM Classification. Cancer (2009) 115(2):243–50. doi: 10.1002/cncr.24030
    1. Beuschlein F, Weigel J, Saeger W, Kroiss M, Wild V, Daffara F, et al. . Major Prognostic Role of Ki67 in Localized Adrenocortical Carcinoma After Complete Resection. J Clin Endocrinol Metab (2015) 100(3):841–9. doi: 10.1210/jc.2014-3182
    1. Sbiera I, Kircher S, Altieri B, Fassnacht M, Kroiss M, Sbiera S. Epithelial and Mesenchymal Markers in Adrenocortical Tissues: How Mesenchymal Are Adrenocortical Tissues? Cancers (2021) 13(7):1736. doi: 10.3390/cancers13071736
    1. Burgess WH, Maciag T. The Heparin-Binding (Fibroblast) Growth Factor Family of Proteins. Annu Rev Biochem (1989) 58:575–606. doi: 10.1146/annurev.bi.58.070189.003043
    1. Li X, Chen Y, Scheele S, Arman E, Haffner-Krausz R, Ekblom P, et al. . Fibroblast Growth Factor Signaling and Basement Membrane Assembly are Connected During Epithelial Morphogenesis of the Embryoid Body. J Cell Biol (2001) 153(4):811–22. doi: 10.1083/jcb.153.4.811
    1. Schiller JH, Bittner G. Loss of the Tumorigenic Phenotype With In Vitro, But Not In Vivo, Passaging of a Novel Series of Human Bronchial Epithelial Cell Lines: Possible Role of an Alpha 5/Beta 1-Integrin-Fibronectin Interaction. Cancer Res (1995) 55(24):6215–21.
    1. Tsai YY, Rainey WE, Pan ZQ, Frohman MA, Choudhary V, Bollag WB. Phospholipase D Activity Underlies Very-Low-Density Lipoprotein (VLDL)-Induced Aldosterone Production in Adrenal Glomerulosa Cells. Endocrinology (2014) 155(9):3550–60. doi: 10.1210/en.2014-1159
    1. Rabano M, Pena A, Brizuela L, Macarulla JM, Gomez-Munoz A, Trueba M. Angiotensin II-Stimulated Cortisol Secretion is Mediated by Phospholipase D. Mol Cell Endocrinol (2004) 222(1-2):9–20. doi: 10.1016/j.mce.2004.05.006
    1. Romero DG, Plonczynski M, Vergara GR, Gomez-Sanchez EP, Gomez-Sanchez CE. Angiotensin II Early Regulated Genes in H295R Human Adrenocortical Cells. Physiol Genomics (2004) 19(1):106–16. doi: 10.1152/physiolgenomics.00097.2004
    1. Hafner R, Bohnenpoll T, Rudat C, Schultheiss TM, Kispert A. Fgfr2 Is Required for the Expansion of the Early Adrenocortical Primordium. Mol Cell Endocrinol (2015) 413:168–77. doi: 10.1016/j.mce.2015.06.022
    1. Leng S, Pignatti E, Khetani RS, Shah MS, Xu S, Miao J, et al. . Beta-Catenin and FGFR2 Regulate Postnatal Rosette-Based Adrenocortical Morphogenesis. Nat Commun (2020) 11(1):1680. doi: 10.1038/s41467-020-15332-7
    1. Pihlajoki M, Gretzinger E, Cochran R, Kyronlahti A, Schrade A, Hiller T, et al. . Conditional Mutagenesis of Gata6 in SF1-Positive Cells Causes Gonadal-Like Differentiation in the Adrenal Cortex of Mice. Endocrinology (2013) 154(5):1754–67. doi: 10.1210/en.2012-1892
    1. Laurell C, Velazquez-Fernandez D, Lindsten K, Juhlin C, Enberg U, Geli J, et al. . Transcriptional Profiling Enables Molecular Classification of Adrenocortical Tumours. Eur J Endocrinol (2009) 161(1):141–52. doi: 10.1530/EJE-09-0068
    1. De Martino MC, Al Ghuzlan A, Aubert S, Assie G, Scoazec JY, Leboulleux S, et al. . Molecular Screening for a Personalized Treatment Approach in Advanced Adrenocortical Cancer. J Clin Endocrinol Metab (2013) 98(10):4080–8. doi: 10.1210/jc.2013-2165
    1. Brito LP, Ribeiro TC, Almeida MQ, Jorge AA, Soares IC, Latronico AC, et al. . The Role of Fibroblast Growth Factor Receptor 4 Overexpression and Gene Amplification as Prognostic Markers in Pediatric and Adult Adrenocortical Tumors. Endocr Relat Cancer (2012) 19(3):L11–3. doi: 10.1530/ERC-11-0231
    1. Kuro OM. Klotho and Endocrine Fibroblast Growth Factors: Markers of Chronic Kidney Disease Progression and Cardiovascular Complications? Nephrol Dial Transplant (2019) 34(1):15–21. doi: 10.1093/ndt/gfy126
    1. Zhao Z, Rivkees SA. Tissue-Specific Expression of GTPas RalA and RalB During Embryogenesis and Regulation by Epithelial-Mesenchymal Interaction. Mech Dev (2000) 97(1-2):201–4. doi: 10.1016/s0925-4773(00)00427-5
    1. Hu S, Dong X, Gao W, Stupack D, Liu Y, Xiang R, et al. . Alternative Promotion and Suppression of Metastasis by JNK2 Governed by its Phosphorylation. Oncotarget (2017) 8(34):56569–81. doi: 10.18632/oncotarget.17507
    1. Lessel W, Silver A, Jechorek D, Guenther T, Roehl FW, Kalinski T, et al. . Inactivation of JNK2 as Carcinogenic Factor in Colitis-Associated and Sporadic Colorectal Carcinogenesis. Carcinogenesis (2017) 38(5):559–69. doi: 10.1093/carcin/bgx032
    1. Lin Y, Yang Z, Xu A, Dong P, Huang Y, Liu H, et al. . PIK3R1 Negatively Regulates the Epithelial-Mesenchymal Transition and Stem-Like Phenotype of Renal Cancer Cells Through the AKT/GSK3beta/CTNNB1 Signaling Pathway. Sci Rep (2015) 5:8997. doi: 10.1038/srep08997
    1. Kang YE, Kim JT, Lim MA, Oh C, Liu L, Jung SN, et al. . Association Between Circulating Fibroblast Growth Factor 21 and Aggressiveness in Thyroid Cancer. Cancers (Basel) (2019) 11(8):1154. doi: 10.3390/cancers11081154
    1. Kim SH, Kim JW, Hwang IG, Jang JS, Hong S, Kim TY, et al. . Serum Biomarkers for Predicting Overall Survival and Early Mortality in Older Patients With Metastatic Solid Tumors. J Geriatr Oncol (2019) 10(5):749–56. doi: 10.1016/j.jgo.2019.03.015
    1. Osawa T, Muramatsu M, Watanabe M, Shibuya M. Hypoxia and Low-Nutrition Double Stress Induces Aggressiveness in a Murine Model of Melanoma. Cancer Sci (2009) 100(5):844–51. doi: 10.1111/j.1349-7006.2009.01105.x
    1. Ebrahimi F, Wolffenbuttel C, Blum CA, Baumgartner C, Mueller B, Schuetz P, et al. . Fibroblast Growth Factor 21 Predicts Outcome in Community-Acquired Pneumonia: Secondary Analysis of Two Randomised Controlled Trials. Eur Respir J (2019) 53(2):1800973. doi: 10.1183/13993003.00973-2018
    1. Schuler M, Cho BC, Sayehli CM, Navarro A, Soo RA, Richly H, et al. . Rogaratinib in Patients With Advanced Cancers Selected by FGFR mRNA Expression: A Phase 1 Dose-Escalation and Dose-Expansion Study. Lancet Oncol (2019) 20(10):1454–66. doi: 10.1016/S1470-2045(19)30412-7
    1. Grunewald S, Politz O, Bender S, Heroult M, Lustig K, Thuss U, et al. . Rogaratinib: A Potent and Selective Pan-FGFR Inhibitor With Broad Antitumor Activity in FGFR-Overexpressing Preclinical Cancer Models. Int J Cancer (2019) 145(5):1346–57. doi: 10.1002/ijc.32224

Source: PubMed

3
Prenumerera