A multimodality intervention to improve musculoskeletal health, function, metabolism, and well-being in spinal cord injury: study protocol for the FIT-SCI randomized controlled trial

K F Reid, T W Storer, K M Pencina, R Valderrabano, N K Latham, L Wilson, C Ghattas, R Dixon, A Nunes, N Bajdek, G Huang, S E Skeels, A P Lin, S M Merugumala, H J Liao, M L Bouxsein, R D Zafonte, S Bhasin, K F Reid, T W Storer, K M Pencina, R Valderrabano, N K Latham, L Wilson, C Ghattas, R Dixon, A Nunes, N Bajdek, G Huang, S E Skeels, A P Lin, S M Merugumala, H J Liao, M L Bouxsein, R D Zafonte, S Bhasin

Abstract

Background: A spinal cord injury (SCI) is a devastating, life-changing event that has profoundly deleterious effects on an individual's health and well-being. Dysregulation of neuromuscular, cardiometabolic, and endocrine organ systems following an SCI contribute to excess morbidity, mortality and a poor quality of life. As no effective treatments currently exist for SCI, the development of novel strategies to improve the functional and health status of individuals living with SCI are much needed. To address this knowledge gap, the current study will determine whether a Home-Based Multimodality Functional Recovery and Metabolic Health Enhancement Program that consists of functional electrical stimulation of the lower extremity during leg cycling (FES-LC) plus arm ergometry (AE) administered using behavioral motivational strategies, and testosterone therapy, is more efficacious than FES-LC plus AE and placebo in improving aerobic capacity, musculoskeletal health, function, metabolism, and wellbeing in SCI.

Methods: This single-site, randomized, placebo-controlled, parallel group trial will enroll 88 community-dwelling men and women, 19 to 70 years of age, with cervical and thoracic level of SCI, ASIA Impairment Scale grade: A, B, C, or D, 6 months or later after an SCI. Participants randomized to the multimodality intervention will undergo 16 weeks of home-based FES-LC and AE training plus testosterone undecanoate. Testosterone undecanoate injections will be administered by study staff in clinic or by a visiting nurse in the participant's home. The control group will receive 16 weeks of home-based FES-LC and AE exercise plus placebo injections. The primary outcome of this trial is peak aerobic capacity, measured during an incremental exercise testing protocol. Secondary outcomes include whole body and regional lean and adipose tissue mass; muscle strength and power; insulin sensitivity, lipids, and inflammatory markers; SCI functional index and wellbeing (mood, anxiety, pain, life satisfaction and depressive symptoms); and safety.

Discussion: We anticipate that a multimodality intervention that simultaneously addresses multiple physiological impairments in SCI will result in increased aerobic capacity and greater improvements in other musculoskeletal, metabolic, functional and patient-reported outcomes compared to the control intervention. The findings of this study will have important implications for improving the care of people living with an SCI.

Trial registration: ClinicalTrials.gov : ( NCT03576001 ). Prospectively registered: July 3, 2018.

Keywords: Androgen therapy; Exercise; Multimodality intervention; Spinal cord injury.

Conflict of interest statement

SB reports receiving research grant support from AbbVie, Transition Therapeutics, FPT, and Metro International Biotechnology, Inc. and has received consulting fees from OPKO Pharmaceuticals and POXEL, Inc., and has equity interest in FPT, LLC and Xyone Therapeutics. Other authors report no conflicts of interest.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Flowchart of trial participation
Fig. 2
Fig. 2
Conceptual Model for Hypothesized Effects of Multimodality Intervention in SCI. Exercise (FES-LC + AE) and testosterone may individually increase aerobic capacity, and muscle mass and strength, which would improve physical function and wellbeing. Exercise or testosterone may also enhance metabolic adaptations directly through effects on muscle mass and contractility mediated via myokines, fuel utilization, and other mechanisms, and indirectly via increased activity. Testosterone may directly affect metabolism and wellbeing. When combined, the synergistic effects of the multimodality intervention (FES-LC + AE + testosterone) may induce greater benefits compared to each intervention alone (as shown by larger solid arrows)

References

    1. Singh A, Tetreault L, Kalsi-Ryan S, Nouri A, Fehlings MG. Global prevalence and incidence of traumatic spinal cord injury. Clin Epidemiol. 2014;6:309–331.
    1. Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Traumatic spinal cord injury: an overview of pathophysiology, models and acute injury mechanisms. Front Neurol. 2019;10:282. doi: 10.3389/fneur.2019.00282.
    1. de Groot S, Dallmeijer AJ, Post MW, Angenot EL, van der Woude LH. The longitudinal relationship between lipid profile and physical capacity in persons with a recent spinal cord injury. Spinal Cord. 2008;46(5):344–351. doi: 10.1038/sj.sc.3102147.
    1. Qin W, Bauman WA, Cardozo C. Bone and muscle loss after spinal cord injury: organ interactions. Ann N Y Acad Sci. 2010;1211:66–84. doi: 10.1111/j.1749-6632.2010.05806.x.
    1. Bauman WA, Spungen AM. Metabolic changes in persons after spinal cord injury. Phys Med Rehabil Clin N Am. 2000;11(1):109–140. doi: 10.1016/S1047-9651(18)30150-5.
    1. Weaver FM, Collins EG, Kurichi J, Miskevics S, Smith B, Rajan S, et al. Prevalence of obesity and high blood pressure in veterans with spinal cord injuries and disorders: a retrospective review. Am J Phys Med Rehabil. 2007;86(1):22–29. doi: 10.1097/PHM.0b013e31802b8937.
    1. Gilbert O, Croffoot JR, Taylor AJ, Nash M, Schomer K, Groah S. Serum lipid concentrations among persons with spinal cord injury - a systematic review and meta-analysis of the literature. Atherosclerosis. 2014;232(2):305–312. doi: 10.1016/j.atherosclerosis.2013.11.028.
    1. Karlsson AK. Insulin resistance and sympathetic function in high spinal cord injury. Spinal Cord. 1999;37(7):494–500. doi: 10.1038/sj.sc.3100844.
    1. Raguindin PF, Frankl G, Itodo OA, Bertolo A, Zeh RM, Capossela S, et al. The neurological level of spinal cord injury and cardiovascular risk factors: a systematic review and meta-analysis. Spinal Cord. 2021;59(11):1135–1145. doi: 10.1038/s41393-021-00678-6.
    1. Singh R, Rohilla RK, Saini G, Kaur K. Longitudinal study of body composition in spinal cord injury patients. Indian J Orthop. 2014;48(2):168–177. doi: 10.4103/0019-5413.128760.
    1. Solinsky R, Betancourt L, Schmidt-Read M, Kupfer M, Owens M, Schwab JM, et al. Acute spinal cord injury is associated with prevalent Cardiometabolic risk factors. Arch Phys Med Rehabil. 2022;103(4):696–701.
    1. Sauri J, Chamarro A, Gilabert A, Gifre M, Rodriguez N, Lopez-Blazquez R, et al. Depression in individuals with traumatic and nontraumatic spinal cord injury living in the community. Arch Phys Med Rehabil. 2017;98(6):1165–1173. doi: 10.1016/j.apmr.2016.11.011.
    1. Migliorini CE, New PW, Tonge BJ. Quality of life in adults with spinal cord injury living in the community. Spinal Cord. 2011;49(3):365–370. doi: 10.1038/sc.2010.102.
    1. Ataoglu E, Tiftik T, Kara M, Tunc H, Ersoz M, Akkus S. Effects of chronic pain on quality of life and depression in patients with spinal cord injury. Spinal Cord. 2013;51(1):23–26. doi: 10.1038/sc.2012.51.
    1. Wheeler GD, Andrews B, Lederer R, Davoodi R, Natho K, Weiss C, et al. Functional electric stimulation-assisted rowing: increasing cardiovascular fitness through functional electric stimulation rowing training in persons with spinal cord injury. Arch Phys Med Rehabil. 2002;83(8):1093–1099. doi: 10.1053/apmr.2002.33656.
    1. Ginis KA, Hicks AL, Latimer AE, Warburton DE, Bourne C, Ditor DS, et al. The development of evidence-informed physical activity guidelines for adults with spinal cord injury. Spinal Cord. 2011;49(11):1088–1096. doi: 10.1038/sc.2011.63.
    1. Martin Ginis KA, van der Scheer JW, Latimer-Cheung AE, Barrow A, Bourne C, Carruthers P, et al. Evidence-based scientific exercise guidelines for adults with spinal cord injury: an update and a new guideline. Spinal Cord. 2018;56(4):308–321. doi: 10.1038/s41393-017-0017-3.
    1. van der Scheer JW, Martin Ginis KA, Ditor DS, Goosey-Tolfrey VL, Hicks AL, West CR, et al. Effects of exercise on fitness and health of adults with spinal cord injury: a systematic review. Neurology. 2017;89(7):736–745. doi: 10.1212/WNL.0000000000004224.
    1. Hicks AL, Martin Ginis KA, Pelletier CA, Ditor DS, Foulon B, Wolfe DL. The effects of exercise training on physical capacity, strength, body composition and functional performance among adults with spinal cord injury: a systematic review. Spinal Cord. 2011;49(11):1103–1127. doi: 10.1038/sc.2011.62.
    1. Tweedy SM, Beckman EM, Geraghty TJ, Theisen D, Perret C, Harvey LA, et al. Exercise and sports science Australia (ESSA) position statement on exercise and spinal cord injury. J Sci Med Sport. 2017;20(2):108–115. doi: 10.1016/j.jsams.2016.02.001.
    1. Valent L, Dallmeijer A, Houdijk H, Talsma E, van der Woude L. The effects of upper body exercise on the physical capacity of people with a spinal cord injury: a systematic review. Clin Rehabil. 2007;21(4):315–330. doi: 10.1177/0269215507073385.
    1. Fekete C, Rauch A. Correlates and determinants of physical activity in persons with spinal cord injury: a review using the international classification of functioning, disability and health as reference framework. Disabil Health J. 2012;5(3):140–150. doi: 10.1016/j.dhjo.2012.04.003.
    1. Martin Ginis KA, Ma JK, Latimer-Cheung AE, Rimmer JH. A systematic review of review articles addressing factors related to physical activity participation among children and adults with physical disabilities. Health Psychol Rev. 2016;10(4):478–494. doi: 10.1080/17437199.2016.1198240.
    1. Krauss JC, Robergs RA, Depaepe JL, Kopriva LM, Aisenbury JA, Anderson MA, et al. Effects of electrical stimulation and upper body training after spinal cord injury. Med Sci Sports Exerc. 1993;25(9):1054–1061. doi: 10.1249/00005768-199309000-00014.
    1. Taylor JA, Picard G, Widrick JJ. Aerobic capacity with hybrid FES rowing in spinal cord injury: comparison with arms-only exercise and preliminary findings with regular training. PM R. 2011;3(9):817–824. doi: 10.1016/j.pmrj.2011.03.020.
    1. Bhasin S, Storer TW, Berman N, Yarasheski KE, Clevenger B, Phillips J, et al. Testosterone replacement increases fat-free mass and muscle size in hypogonadal men. J Clin Endocrinol Metab. 1997;82(2):407–413.
    1. Bhasin S, Storer TW, Javanbakht M, Berman N, Yarasheski KE, Phillips J, et al. Testosterone replacement and resistance exercise in HIV-infected men with weight loss and low testosterone levels. JAMA. 2000;283(6):763–770. doi: 10.1001/jama.283.6.763.
    1. Casaburi R, Bhasin S, Cosentino L, Porszasz J, Somfay A, Lewis MI, et al. Effects of testosterone and resistance training in men with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2004;170(8):870–878. doi: 10.1164/rccm.200305-617OC.
    1. Storer TW, Magliano L, Woodhouse L, Lee ML, Dzekov C, Dzekov J, et al. Testosterone dose-dependently increases maximal voluntary strength and leg power, but does not affect fatigability or specific tension. J Clin Endocrinol Metab. 2003;88(4):1478–1485. doi: 10.1210/jc.2002-021231.
    1. Storer TW, Bhasin S, Travison TG, Pencina K, Miciek R, McKinnon J, et al. Testosterone attenuates age-related fall in aerobic function in mobility limited older men with low testosterone. J Clin Endocrinol Metab. 2016;101(6):2562–2569. doi: 10.1210/jc.2015-4333.
    1. Traustadottir T, Harman SM, Tsitouras P, Pencina KM, Li Z, Travison TG, et al. Long-term testosterone supplementation in older men attenuates age-related decline in aerobic capacity. J Clin Endocrinol Metab. 2018;103(8):2861–2869. doi: 10.1210/jc.2017-01902.
    1. Yu JG, Bonnerud P, Eriksson A, Stal PS, Tegner Y, Malm C. Effects of long term supplementation of anabolic androgen steroids on human skeletal muscle. PLoS One. 2014;9(9):e105330. doi: 10.1371/journal.pone.0105330.
    1. Usui T, Kajita K, Kajita T, Mori I, Hanamoto T, Ikeda T, et al. Elevated mitochondrial biogenesis in skeletal muscle is associated with testosterone-induced body weight loss in male mice. FEBS Lett. 2014;588(10):1935–1941. doi: 10.1016/j.febslet.2014.03.051.
    1. Bhasin S, Storer TW, Berman N, Callegari C, Clevenger B, Phillips J, et al. The effects of supraphysiologic doses of testosterone on muscle size and strength in normal men. N Engl J Med. 1996;335(1):1–7. doi: 10.1056/NEJM199607043350101.
    1. Wang H, Zhou WX, Huang JF, Zheng XQ, Tian HJ, Wang B, et al. Endocrine therapy for the functional recovery of spinal cord injury. Front Neurosci. 2020;14:590570. doi: 10.3389/fnins.2020.590570.
    1. Gaspar AP, Brandao CM, Lazaretti-Castro M. Bone mass and hormone analysis in patients with spinal cord injury: evidence for a gonadal axis disruption. J Clin Endocrinol Metab. 2014;99(12):4649–4655. doi: 10.1210/jc.2014-2165.
    1. Barbonetti A, Caterina Vassallo MR, Cotugno M, Felzani G, Francavilla S, Francavilla F. Low testosterone and non-alcoholic fatty liver disease: evidence for their independent association in men with chronic spinal cord injury. J Spinal Cord Med. 2016;39(4):443–449. doi: 10.1179/2045772314Y.0000000288.
    1. Chan AW, Tetzlaff JM, Altman DG, Laupacis A, Gotzsche PC, Krleza-Jeric K, et al. SPIRIT 2013 statement: defining standard protocol items for clinical trials. Ann Intern Med. 2013;158(3):200–207. doi: 10.7326/0003-4819-158-3-201302050-00583.
    1. Moher D, Hopewell S, Schulz KF, Montori V, Gotzsche PC, Devereaux PJ, et al. CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. Int J Surg. 2012;10(1):28–55. doi: 10.1016/j.ijsu.2011.10.001.
    1. Bhasin S, Brito JP, Cunningham GR, Hayes FJ, Hodis HN, Matsumoto AM, et al. Testosterone therapy in men with Hypogonadism: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2018;103(5):1715–1744. doi: 10.1210/jc.2018-00229.
    1. Peckham PH, Knutson JS. Functional electrical stimulation for neuromuscular applications. Annu Rev Biomed Eng. 2005;7:327–360. doi: 10.1146/annurev.bioeng.6.040803.140103.
    1. Borg G. Perceived exertion as an indicator of somatic stress. Scand J Rehabil Med. 1970;2(2):92–98.
    1. Wang C, Nieschlag E, Swerdloff R, Behre HM, Hellstrom WJ, Gooren LJ, et al. Investigation, treatment, and monitoring of late-onset hypogonadism in males: ISA, ISSAM, EAU, EAA, and ASA recommendations. J Androl. 2009;30(1):1–9. doi: 10.2164/jandrol.108.006486.
    1. Corona G, Vena W, Pizzocaro A, Giagulli VA, Francomano D, Rastrelli G, et al. Testosterone supplementation and bone parameters: a systematic review and meta-analysis study. J Endocrinol Investig. 2022;45(5):911–926. doi: 10.1007/s40618-021-01702-5.
    1. Dos Santos MR, Storer TW. Testosterone treatment as a function-promoting therapy in sarcopenia associated with aging and chronic disease. Endocrinol Metab Clin N Am. 2022;51(1):187–204. doi: 10.1016/j.ecl.2021.11.012.
    1. O'Halloran PD, Blackstock F, Shields N, Holland A, Iles R, Kingsley M, et al. Motivational interviewing to increase physical activity in people with chronic health conditions: a systematic review and meta-analysis. Clin Rehabil. 2014;28(12):1159–1171. doi: 10.1177/0269215514536210.
    1. Nooijen CF, Stam HJ, Sluis T, Valent L, Twisk J, van den Berg-Emons RJ. A behavioral intervention promoting physical activity in people with subacute spinal cord injury: secondary effects on health, social participation and quality of life. Clin Rehabil. 2017;31(6):772–780. doi: 10.1177/0269215516657581.
    1. Latimer-Cheung AE, Arbour-Nicitopoulos KP, Brawley LR, Gray C, Justine Wilson A, Prapavessis H, et al. Developing physical activity interventions for adults with spinal cord injury. Part 2: motivational counseling and peer-mediated interventions for people intending to be active. Rehabil Psychol. 2013;58(3):307–315. doi: 10.1037/a0032816.
    1. Storer TW, Basaria S, Traustadottir T, Harman SM, Pencina K, Li Z, et al. Effects of testosterone supplementation for 3 years on muscle performance and physical function in older men. J Clin Endocrinol Metab. 2017;102(2):583–593.
    1. Dolezal BA, Chudzynski J, Storer TW, Abrazado M, Penate J, Mooney L, et al. Eight weeks of exercise training improves fitness measures in methamphetamine-dependent individuals in residential treatment. J Addict Med. 2013;7(2):122–128. doi: 10.1097/ADM.0b013e318282475e.
    1. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–419. doi: 10.1007/BF00280883.
    1. Jette AM, Slavin MD, Ni P, Kisala PA, Tulsky DS, Heinemann AW, et al. Development and initial evaluation of the SCI-FI/AT. J Spinal Cord Med. 2015;38(3):409–418. doi: 10.1179/2045772315Y.0000000003.
    1. Keeney T, Slavin M, Kisala P, Ni P, Heinemann AW, Charlifue S, et al. Sensitivity of the SCI-FI/AT in individuals with traumatic spinal cord injury. Arch Phys Med Rehabil. 2018;99(9):1783–1788. doi: 10.1016/j.apmr.2018.02.014.
    1. Daut RL, Cleeland CS. The prevalence and severity of pain in cancer. Cancer. 1982;50(9):1913–1918. doi: 10.1002/1097-0142(19821101)50:9<1913::AID-CNCR2820500944>;2-R.
    1. Daut RL, Cleeland CS, Flanery RC. Development of the Wisconsin brief pain questionnaire to assess pain in cancer and other diseases. Pain. 1983;17(2):197–210. doi: 10.1016/0304-3959(83)90143-4.
    1. Kroenke K, Spitzer RL, Williams JB. The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med. 2001;16(9):606–613. doi: 10.1046/j.1525-1497.2001.016009606.x.
    1. Spitzer RL, Kroenke K, Williams JB, Lowe B. A brief measure for assessing generalized anxiety disorder: the GAD-7. Arch Intern Med. 2006;166(10):1092–1097. doi: 10.1001/archinte.166.10.1092.
    1. Diener E, Emmons RA, Larsen RJ, Griffin S. The satisfaction with life scale. J Pers Assess. 1985;49(1):71–75. doi: 10.1207/s15327752jpa4901_13.
    1. Hughes ME, Waite LJ, Hawkley LC, Cacioppo JT. A short scale for measuring loneliness in large surveys: results from two population-based studies. Res Aging. 2004;26(6):655–672. doi: 10.1177/0164027504268574.
    1. Brown EG, Wood L, Wood S. The medical dictionary for regulatory activities (MedDRA) Drug Saf. 1999;20(2):109–117. doi: 10.2165/00002018-199920020-00002.
    1. Storer TW, Latham NK, Bhasin S. Maximizing participant and staff safety during assessment of physical function in the COVID-19 era. J Am Geriatr Soc. 2021;69(1):12–17. doi: 10.1111/jgs.16968.

Source: PubMed

3
Prenumerera