High-density lipoprotein subclass and particle size in coronary heart disease patients with or without diabetes

Li Tian, Shiyin Long, Chuanwei Li, Yinghui Liu, Yucheng Chen, Zhi Zeng, Mingde Fu, Li Tian, Shiyin Long, Chuanwei Li, Yinghui Liu, Yucheng Chen, Zhi Zeng, Mingde Fu

Abstract

Background: A higher prevalence of coronary heart disease (CHD) in people with diabetes. We investigated the high-density lipoprotein (HDL) subclass profiles and alterations of particle size in CHD patients with diabetes or without diabetes.

Methods: Plasma HDL subclasses were quantified in CHD by 1-dimensional gel electrophoresis coupled with immunodetection.

Results: Although the particle size of HDL tend to small, the mean levels of low density lipoprotein cholesterol(LDL-C) and total cholesterol (TC) have achieved normal or desirable for CHD patients with or without diabetes who administered statins therapy. Fasting plasma glucose (FPG), triglyceride (TG), TC, LDL-C concentrations, and HDL₃ (HDL(3b) and (3a)) contents along with Gensini Score were significantly higher; but those of HDL-C, HDL(2b+preβ2), and HDL(2a) were significantly lower in CHD patients with diabetes versus CHD patients without diabetes; The preβ₁-HDL contents did not differ significantly between these groups. Multivariate regression analysis revealed that Gensini Score was significantly and independently predicted by HDL(2a), and HDL(2b+preβ2).

Conclusions: The abnormality of HDL subpopulations distribution and particle size may contribute to CHD risk in diabetes patients. The HDL subclasses distribution may help in severity of coronary artery and risk stratification, especially in CHD patients with therapeutic LDL, TG and HDL levels.

Figures

Figure 1
Figure 1
High-density lipoprotein subclasses were separated by nondenaturing 1-dimensional gel electrophoresis and immuodetection. The high molecular protein standards (lane 1), Normolipidemic healthy subjects (lane 2), CHD Patients (lane 3 and lane 4).
Figure 2
Figure 2
The scatter chart of preβ1-HDL and HDL2b+preβ2 between in nondenaturing 1-dimensional and 2-dimensional gel electrophoresis coupled with immuodetection methods.

References

    1. Lundberg V, Stegmayr B, Asplund K, Eliasson M, Huhtasaari F. Diabetes as a risk factor for myocardial infarction: population and gender perspectives. J Intern Med. 1997;241:485–492.
    1. Lotufo PA, Gaziano JM, Chae CU, Ajani UA, Moreno-John G, Buring JE, Manson JE. Diabetes and all-cause and coronary heart disease mortality among US male physicians. Arch Intern Med. 2001;161:242–247. doi: 10.1001/archinte.161.2.242.
    1. Liao Y, Cooper RS, Ghali JK, Lansky D, Cao G, Lee J. Sex differences in the impact of coexistent diabetes on survival in patients with coronary heart disease. Diabetes Care. 1993;16:708–713. doi: 10.2337/diacare.16.5.708.
    1. Hu FB, Stampfer MJ, Solomon CG, Liu S, Willett WC, Speizer FE, Nathan DM, Manson JE. The impact of diabetes mellitus on mortality from all causes and coronary heart disease in women: 20 years of follow-up. Arch Intern Med. 2001;161:1717–1723. doi: 10.1001/archinte.161.14.1717.
    1. Kannel WB, McGee DL. Diabetes and glucose tolerance as risk factors for cardiovascular disease: the Framingham study. Diabetes Care. 1979;2:120–126. doi: 10.2337/diacare.2.2.120.
    1. Miettinen H, Lehto S, Salomaa V, Māhōnen M, Niemelā M, Haffner SM, Pyörälä K, Tuomilehto J. The FINMONICA Myocardial Infarction Register Study Group. Impact of diabetes on mortality after the first myocardial infarction. Diabetes Care. 1998;21:69–75. doi: 10.2337/diacare.21.1.69.
    1. Betteridge DJ. Diabetic dyslipidaemia. Eur Clin Invest. 1999;29(Suppl 2):12–16.
    1. Vega GL, Grundy SM. Hypoalphalipoproteinemia (low high density lipoprotein) as a risk factor for coronary heart disease. Curr Opin Lipidol. 1996;7:209–216. doi: 10.1097/00041433-199608000-00007.
    1. Brewer HB. HDL metabolism and the role of HDL in the treatment of high-risk patients with cardiovascular disease. Curr Cardiol Rep. 2007;9:486–492. doi: 10.1007/BF02938393.
    1. Asztalos BF, Collins D, Cupples LA, Demissie S, Horvath KV, Bloomfield HE, Robins SJ, Schaefer EJ. Value of high density lipoprotein (HDL) subpopulations in predicting recurrent cardiovascular events in the Veterans Affairs HDL Intervention Trial. Arterioscler Thromb Vasc Biol. 2005;25:2185–2191. doi: 10.1161/01.ATV.0000183727.90611.4f.
    1. Guey LT, Pullinger CR, Ishida BY, O’Connor PM, Zellner C, Francone OL, Laramie JM, Naya-Vigne JM, Siradze KA, Deedwania P, Redberg RF, Frost PH, Seymour AB, Kane JP, Malloy MJ. Relation of Increased Prebeta-1 High-Density Lipoprotein Levels to Risk of Coronary Heart Disease. Am J Cardiol. 2011;108:360–366. doi: 10.1016/j.amjcard.2011.03.054.
    1. Arsenault BJ, Lemieux I, Despres JP, Gagnon P, Wareham NJ, Stroes ES, Kastelein JJ, Khaw KT, Boekholdt SM. HDL particle size and the risk of coronary heart disease in apparently healthy men and women: the EPIC-Norfolk prospective population study. Atherosclerosis. 2009;206:276–281. doi: 10.1016/j.atherosclerosis.2009.01.044.
    1. Garvey WT, Kwon S, Zheng DY, Shaughnessy S, Wallace P, Hutto A, Pugh K, Jenkins AJ, Klein RL, Liao YL. Particle size and Concentration Determined by Nuclear Magnetic Resonance. Diabetes. 2003;52:453–462.
    1. Rosenson RS. Functional assessment of HDL: moving beyond static measures for risk assessment. Cardiovasc Drugs Ther. 2010;24:71–75. doi: 10.1007/s10557-009-6214-3.
    1. Gensini GG. A more meaningful scoring system for determining the severity of coronary heart disease. Am J Cardiol. 1983;51:606–607. doi: 10.1016/S0002-9149(83)80105-2.
    1. WHO. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes metlitus. WHO, Geneva; 1999. Available at: dmg.pdf. Accessible in Jan 2007.
    1. Nichols AV, Krauss RM, Musliner TA. Nondenaturing polyacrylamide gradient gel electrophoresis. Methods Enzymol. 1986;128:417–431.
    1. Otvos JD, Jeyarajah EJ, Bennett DW, Krauss RM. Development of a proton nuclear magnetic resonance spectroscopic method for determining plasma lipoprotein concentrations and subspecies distributions from a single, rapid measurement. Clin Chem. 1992;38:1632–1638.
    1. Castro GR, Fielding CJ. Early incorporation of cell-derived cholesterol into preβ-migrating high density lipoprotein. Biochemistry. 1988;27:25–29. doi: 10.1021/bi00401a005.
    1. Fielding CJ, Fielding PE. Molecular physiology of reverse cholesterol transport. J Lipid Res. 1995;36:211–228.
    1. Xu YH, Fu MD. Alterations of HDL subclasses in hyperlipidemia. Clin Chim Acta. 2003;332:95–102. doi: 10.1016/S0009-8981(03)00138-4.
    1. Tian L, Jia LQ, Fu MD, Tian Y, Xu YH, Tian HM, Yang YY. Alterations of high density lipoprotein subclasses in obese subjects. Lipids. 2006;41:789–796. doi: 10.1007/s11745-006-5032-7.
    1. Gou LT, Fu MD, Xu YH, Tian Y, Yan BY, Yang LC. Alterations of HDL subclasses in endogenous hypertriglyceridemia. Am Heart J. 2005;150:1039–1045. doi: 10.1016/j.ahj.2005.02.032.
    1. Jia LQ, Fu MD, Tian Y, Xu YH, Gou LT, Tian HM, Tian LI. Alterations of high-density lipoprotein subclasses in hypercholesterolemia and combined hyperlipidemia. Int J Cardio. 2007;120:331–337. doi: 10.1016/j.ijcard.2006.10.007.
    1. WHO. Technical Report Series No. 844. Prevention of diabetes mellitus: report of a WHO Study Group. World Health Organization, Geneva; 1994.
    1. Xu YH, Fu MD, Wu XW, Ren Y. Study on the content of serum HDL subclasses in type 2 diabetic patients. Chin J Diabetes. 2001;9:160–162.
    1. Xu YH, Fu MD, Xu YX, Yang LC, Liu Y, Yao J. Relationship between the concentrations of plasma lipids and the contents of serum HDL subclasses in patients with coronary heart disease. J Clin Cardiol (China) 2003;19:581–584.
    1. Lamarche B, Uffelman KD, Carpentier A, Cohn JS, Steiner G, Barrett PH, Lewis GF. Triglyceride enrichment of HDL enhances in vivo metabolic clearance of HDL apo A-I in healthy men. J Clin Invest. 1999;103:1191–1199. doi: 10.1172/JCI5286.
    1. Eckel RH. Lipoprotein lipase. A multifunctional enzyme relevant to common metabolic diseases. N Engl J Med. 1989;320:1060–1068. doi: 10.1056/NEJM198904203201607.
    1. Rye KA, Barter PJ. Formation and metabolism of prebeta migrating, lipid-poor apolipoprotein A-I. Arterioscler Thromb Vasc Biol. 2004;24:421–428. doi: 10.1161/01.ATV.0000104029.74961.f5.
    1. Baldan A, Tarr P, Lee R, Edwards PA. ATP-binding cassette transporter G1 and lipid homeostasis. Curr Opin Lipidol. 2006;17:227–232. doi: 10.1097/.
    1. Rye K-A, Clay MA, Barter PJ. Remodelling of high density lipoproteins by plasma factors. Atherosclerosis. 1999;145:227–238. doi: 10.1016/S0021-9150(99)00150-1.
    1. Lee M, Kim JQ, Kim J, Oh H, Park M. Studies on the plasma lipid profiles, and LCAT and CETP activities according to hyperlipoproteinemia phenotypes(HLP) Atherosclerosis. 2001;159:381–389. doi: 10.1016/S0021-9150(01)00513-5.
    1. Knudsen P, Eriksson J, Lahdenpera S, Kahri J, Groop L, Taskinen MR. Changes of lipolytic enzymes cluster with insulin resistance syndrome. Botnia Study Group. Diabetologia. 1995;38:344–350. doi: 10.1007/BF00400640.
    1. Mauldin JP, Srinivasan S, Mulya A, Gebre A, Parks JS, Daugherty A, Hedrick CC. Reduction in ABCG1 in Type 2 diabetic mice increases macrophage foam cell formation. J Biol Chem. 2006;281:21216–21224. doi: 10.1074/jbc.M510952200.
    1. Uehara Y, Engel T, Li Z, Goepfert C, Rust S, Zhou X, Langer C, Schachtrup C, Wiekowski J, Lorkowski S, Assmann G, von Eckardstein A. Polyunsaturated fatty acids and acetoacetate downregulate the expression of the ATP-binding cassette transporter A1. Diabetes. 2002;51:2922–2928. doi: 10.2337/diabetes.51.10.2922.
    1. Jauhiainen M, Metso J, Pahlman R, Blomqvist S, van Tol A, Ehnholm C. Human plasma phospholipid transfer protein causes high density lipoprotein conversion. J Biol Chem. 1993;268:4032–4036.
    1. James RW, Brulhart-Meynet MC, Lehmann T, Golay A. Lipoprotein distribution and composition in obesity: their association with central adiposity. Int J Obes. 1997;21:1115–1120. doi: 10.1038/sj.ijo.0800524.
    1. Terry RB, Wood PD, Haskell WL, Stefanick ML, Krauss RM. Regional adiposity patterns in relation to lipids, lipoprotein cholesterol, and lipoprotein subfraction mass in men. J Clin Endocrinol Metab. 1989;68:191–199. doi: 10.1210/jcem-68-1-191.
    1. Walton C, Lees B, Grook D, Worthington M, Godsland IF, Stevenson JC. Body fat distribution, rather than overall adiposity, influences serum lipids and lipoproteins in men independently of age. Am J Med. 1995;99:459–464. doi: 10.1016/S0002-9343(99)80220-4.
    1. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III) JAMA. 2001;285:2486–2497. doi: 10.1001/jama.285.19.2486.
    1. Asztalos BF, Roheim PS, Milani RL, Lefevre M, McNamara JR, Horvath KV, Schaefer EJ. Distribution of ApoA-I-containing HDL subpopulations in patients with coronary heart disease. Arterioscler Thromb Vasc Biol. 2000;20:2670–2676. doi: 10.1161/01.ATV.20.12.2670.
    1. Asztalos BF, Horvath KV, McNamara JR, Roheim PS, Rubinstein JJ, Schaefer EJ. Comparing the effects of five different statins on the HDL subpopulation profiles of coronary heart disease patients. Atherosclerosis. 2002;164:361–369. doi: 10.1016/S0021-9150(02)00149-1.

Source: PubMed

3
Prenumerera