Bladder Cancer: New Insights into Its Molecular Pathology

Kentaro Inamura, Kentaro Inamura

Abstract

Bladder cancer is one of the most prevalent cancers worldwide. Unfortunately, there have been few advances in its clinical management due to a poor understanding of the correlations between its molecular and clinical features. Mounting evidence suggests that bladder cancer comprises a group of molecularly heterogeneous diseases that undergo a variety of clinical courses and possess diverse therapeutic responses. Owing to the close association between its molecular subtypes and clinicopathological features, specific therapeutic strategies have recently been suggested. This review summarizes the current understanding of the molecular pathology of bladder cancer, including its molecular biomarkers/pathways and molecular subtypes that have been newly identified using high-throughput technologies. It also discusses advances in our understanding of personalized treatments for specific molecular subtypes.

Keywords: APOBEC; FGFR3; GATA3; PD-L1; The Cancer Genome Atlas (TCGA); immune checkpoint inhibitor; molecular pathological epidemiology; precision medicine; uroplakin; urothelial carcinoma.

Conflict of interest statement

The author declares no conflict of interest.

Figures

Figure 1
Figure 1
Morphology of non-invasive bladder cancer (hematoxylin and eosin staining). (A) Non-invasive papillary tumor (pTa); (B) Carcinoma in situ (CIS; pTis). Scale bar = 100 µm.
Figure 2
Figure 2
Potential pathways of the tumorigenesis and tumor progression of bladder cancer [2,6,25]. Bladder cancer develops either via divergent pathways comprising either the FGFR3/RAS pathway (green) or the TP53/RB1 pathway (red). Chromosome nine deletion occurs in the early phase of tumorigenesis. FGFR3/HRAS mutation frequently occurs during the development of hyperplasia. In case of low-grade Ta carcinoma with recurrent PIK3CA/STAG2 mutation, hyperplasia develops into high-grade Ta carcinoma, which may progress to become T1 carcinoma after CDKN2A inactivation or TP53/RB1 inactivation. TP53 mutation frequently occurs during the development of dysplasia. Dysplasia may develop into CIS (Tis) after RB1, followed by T1 carcinoma. T1 carcinoma progresses to become MIBC (T2) after various genomic alterations. Chr, chromosome; CIS, carcinoma in situ; MIBC, muscle-invasive bladder cancer; mut, mutation.
Figure 3
Figure 3
(A) Basal type of bladder cancer (hematoxylin and eosin staining); (B) CK5/6 immunostaining (cytoplasmic; positive); (C) CD44 immunostaining (membranous; positive); (D) TP63 immunostaining (nuclear; positive); (E) EGFR immunostaining (membranous; positive). Scale bar = 100 µm.
Figure 4
Figure 4
(A) Luminal type of bladder cancer (hematoxylin and eosin staining); (B) KRT20 immunostaining (cytoplasmic; positive); (C) GATA3 immunostaining (nuclear; positive); (D) Uroplakin II immunostaining (cytoplasmic and membranous; positive); (E) ERBB2 immunostaining (membranous; positive). Scale bar = 100 µm.
Figure 5
Figure 5
The mRNA-based subtypes of muscle-invasive bladder cancer (MIBC) by The Cancer Genome Atlas consortium [13]. MIBC can be divided into five subtypes [luminal-papillary (35%), luminal-infiltrated (19%), luminal (6%), basal-squamous (35%) and neuronal (5%)].
Figure 6
Figure 6
Categorization of muscle-invasive bladder cancer into five different subtypes based on mRNA expression by The Cancer Genome Atlas consortium [13]. Molecular and clinicopathological characteristics and suggested treatments for the five subtypes are summarized. CIS, carcinoma in situ; EMT, epithelial-mesenchymal transition; NAC, neoadjuvant chemotherapy; SHH, sonic hedgehog.

References

    1. Antoni S., Ferlay J., Soerjomataram I., Znaor A., Jemal A., Bray F. Bladder Cancer Incidence and Mortality: A Global Overview and Recent Trends. Eur. Urol. 2017;71:96–108. doi: 10.1016/j.eururo.2016.06.010.
    1. Sanli O., Dobruch J., Knowles M.A., Burger M., Alemozaffar M., Nielsen M.E., Lotan Y. Bladder cancer. Nat. Rev. Dis. Prim. 2017;3:17022. doi: 10.1038/nrdp.2017.22.
    1. Babjuk M., Burger M., Zigeuner R., Shariat S.F., van Rhijn B.W., Comperat E., Sylvester R.J., Kaasinen E., Bohle A., Palou Redorta J., et al. EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder: Update 2013. Eur. Urol. 2013;64:639–653. doi: 10.1016/j.eururo.2013.06.003.
    1. Eich M.L., Dyrskjot L., Netto G.J. Toward personalized management in bladder cancer: The promise of novel molecular taxonomy. Virchows Arch. 2017;471:271–280. doi: 10.1007/s00428-017-2119-x.
    1. Moch H., Humphrey P.A., Ulbright T.M., Reuter V.E. WHO Classification of Tumours of the Urinary System and Male Genital Organs. 4th ed. IARC Press; Lyon, France: 2016.
    1. Knowles M.A., Hurst C.D. Molecular biology of bladder cancer: New insights into pathogenesis and clinical diversity. Nat. Rev. Cancer. 2015;15:25–41. doi: 10.1038/nrc3817.
    1. Kim J., Akbani R., Creighton C.J., Lerner S.P., Weinstein J.N., Getz G., Kwiatkowski D.J. Invasive Bladder Cancer: Genomic Insights and Therapeutic Promise. Clin. Cancer Res. 2015;21:4514–4524. doi: 10.1158/1078-0432.CCR-14-1215.
    1. Damrauer J.S., Hoadley K.A., Chism D.D., Fan C., Tiganelli C.J., Wobker S.E., Yeh J.J., Milowsky M.I., Iyer G., Parker J.S., et al. Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of breast cancer biology. Proc. Natl. Acad. Sci. USA. 2014;111:3110–3115. doi: 10.1073/pnas.1318376111.
    1. Choi W., Porten S., Kim S., Willis D., Plimack E.R., Hoffman-Censits J., Roth B., Cheng T., Tran M., Lee I.L., et al. Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell. 2014;25:152–165. doi: 10.1016/j.ccr.2014.01.009.
    1. Lindgren D., Frigyesi A., Gudjonsson S., Sjodahl G., Hallden C., Chebil G., Veerla S., Ryden T., Mansson W., Liedberg F., et al. Combined gene expression and genomic profiling define two intrinsic molecular subtypes of urothelial carcinoma and gene signatures for molecular grading and outcome. Cancer Res. 2010;70:3463–3472. doi: 10.1158/0008-5472.CAN-09-4213.
    1. Lindgren D., Sjodahl G., Lauss M., Staaf J., Chebil G., Lovgren K., Gudjonsson S., Liedberg F., Patschan O., Mansson W., et al. Integrated genomic and gene expression profiling identifies two major genomic circuits in urothelial carcinoma. PLoS ONE. 2012;7:e38863. doi: 10.1371/journal.pone.0038863.
    1. The Cancer Genome Atlas Research Network Comprehensive molecular characterization of urothelial bladder carcinoma. Nature. 2014;507:315–322.
    1. Robertson A.G., Kim J., Al-Ahmadie H., Bellmunt J., Guo G., Cherniack A.D., Hinoue T., Laird P.W., Hoadley K.A., Akbani R., et al. Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer. Cell. 2017;171:540–556.e25. doi: 10.1016/j.cell.2017.09.007.
    1. Hedegaard J., Lamy P., Nordentoft I., Algaba F., Hoyer S., Ulhoi B.P., Vang S., Reinert T., Hermann G.G., Mogensen K., et al. Comprehensive Transcriptional Analysis of Early-Stage Urothelial Carcinoma. Cancer Cell. 2016;30:27–42. doi: 10.1016/j.ccell.2016.05.004.
    1. Sjodahl G., Eriksson P., Liedberg F., Hoglund M. Molecular classification of urothelial carcinoma: Global mRNA classification versus tumour-cell phenotype classification. J. Pathol. 2017;242:113–125. doi: 10.1002/path.4886.
    1. Balbas-Martinez C., Sagrera A., Carrillo-de-Santa-Pau E., Earl J., Marquez M., Vazquez M., Lapi E., Castro-Giner F., Beltran S., Bayes M., et al. Recurrent inactivation of STAG2 in bladder cancer is not associated with aneuploidy. Nat. Genet. 2013;45:1464–1469. doi: 10.1038/ng.2799.
    1. Gui Y., Guo G., Huang Y., Hu X., Tang A., Gao S., Wu R., Chen C., Li X., Zhou L., et al. Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder. Nat. Genet. 2011;43:875–878. doi: 10.1038/ng.907.
    1. Gerullis H., Otto T., Ecke T.H. Targeted agents in second-line bladder cancer therapy. Anticancer Drugs. 2012;23:1003–1015. doi: 10.1097/CAD.0b013e3283582a33.
    1. Guo G., Sun X., Chen C., Wu S., Huang P., Li Z., Dean M., Huang Y., Jia W., Zhou Q., et al. Whole-genome and whole-exome sequencing of bladder cancer identifies frequent alterations in genes involved in sister chromatid cohesion and segregation. Nat. Genet. 2013;45:1459–1463. doi: 10.1038/ng.2798.
    1. Solomon D.A., Kim J.S., Bondaruk J., Shariat S.F., Wang Z.F., Elkahloun A.G., Ozawa T., Gerard J., Zhuang D., Zhang S., et al. Frequent truncating mutations of STAG2 in bladder cancer. Nat. Genet. 2013;45:1428–1430. doi: 10.1038/ng.2800.
    1. Ecke T.H., Stier K., Weickmann S., Zhao Z., Buckendahl L., Stephan C., Kilic E., Jung K. miR-199a-3p and miR-214-3p improve the overall survival prediction of muscle-invasive bladder cancer patients after radical cystectomy. Cancer Med. 2017;6:2252–2262. doi: 10.1002/cam4.1161.
    1. Pop-Bica C., Gulei D., Cojocneanu-Petric R., Braicu C., Petrut B., Berindan-Neagoe I. Understanding the Role of Non-Coding RNAs in Bladder Cancer: From Dark Matter to Valuable Therapeutic Targets. Int. J. Mol. Sci. 2017;18:1514. doi: 10.3390/ijms18071514.
    1. Conconi D., Sala E., Bovo G., Strada G., Dalpra L., Lavitrano M., Bentivegna A. Using Copy Number Alterations to Identify New Therapeutic Targets for Bladder Carcinoma. Int. J. Mol. Sci. 2016;17:271. doi: 10.3390/ijms17030271.
    1. Sandberg A.A. Cytogenetics and molecular genetics of bladder cancer: A personal view. Am. J. Med. Genet. 2002;115:173–182. doi: 10.1002/ajmg.10693.
    1. Wu X.R. Urothelial tumorigenesis: A tale of divergent pathways. Nat. Rev. Cancer. 2005;5:713–725. doi: 10.1038/nrc1697.
    1. Hartmann A., Schlake G., Zaak D., Hungerhuber E., Hofstetter A., Hofstaedter F., Knuechel R. Occurrence of chromosome 9 and p53 alterations in multifocal dysplasia and carcinoma in situ of human urinary bladder. Cancer Res. 2002;62:809–818.
    1. Obermann E.C., Junker K., Stoehr R., Dietmaier W., Zaak D., Schubert J., Hofstaedter F., Knuechel R., Hartmann A. Frequent genetic alterations in flat urothelial hyperplasias and concomitant papillary bladder cancer as detected by CGH, LOH, and FISH analyses. J. Pathol. 2003;199:50–57. doi: 10.1002/path.1259.
    1. Lawrence M.S., Stojanov P., Polak P., Kryukov G.V., Cibulskis K., Sivachenko A., Carter S.L., Stewart C., Mermel C.H., Roberts S.A., et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 2013;499:214–218. doi: 10.1038/nature12213.
    1. Allory Y., Beukers W., Sagrera A., Flandez M., Marques M., Marquez M., van der Keur K.A., Dyrskjot L., Lurkin I., Vermeij M., et al. Telomerase reverse transcriptase promoter mutations in bladder cancer: High frequency across stages, detection in urine, and lack of association with outcome. Eur. Urol. 2014;65:360–366. doi: 10.1016/j.eururo.2013.08.052.
    1. Wang C.C., Huang C.Y., Jhuang Y.L., Chen C.C., Jeng Y.M. Biological significance of TERT promoter mutation in papillary urothelial neoplasm of low malignant potential. Histopathology. 2018;72:795–803. doi: 10.1111/his.13441.
    1. Gunes C., Rudolph K.L. The role of telomeres in stem cells and cancer. Cell. 2013;152:390–393. doi: 10.1016/j.cell.2013.01.010.
    1. Hurst C.D., Knowles M.A. Bladder cancer: Multi-omic profiling refines the molecular view. Nat. Rev. Clin. Oncol. 2018;15:203–204. doi: 10.1038/nrclinonc.2017.195.
    1. Lawrence M.S., Stojanov P., Mermel C.H., Robinson J.T., Garraway L.A., Golub T.R., Meyerson M., Gabriel S.B., Lander E.S., Getz G. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature. 2014;505:495–501. doi: 10.1038/nature12912.
    1. Galsky M.D. Bladder cancer in 2017: Advancing care through genomics and immune checkpoint blockade. Nat. Rev. Urol. 2018;15:71–72. doi: 10.1038/nrurol.2017.199.
    1. Hernandez S., Lopez-Knowles E., Lloreta J., Kogevinas M., Amoros A., Tardon A., Carrato A., Serra C., Malats N., Real F.X. Prospective study of FGFR3 mutations as a prognostic factor in nonmuscle invasive urothelial bladder carcinomas. J. Clin. Oncol. 2006;24:3664–3671. doi: 10.1200/JCO.2005.05.1771.
    1. Cappellen D., De Oliveira C., Ricol D., de Medina S., Bourdin J., Sastre-Garau X., Chopin D., Thiery J.P., Radvanyi F. Frequent activating mutations of FGFR3 in human bladder and cervix carcinomas. Nat. Genet. 1999;23:18–20.
    1. Van Rhijn B.W., van der Kwast T.H., Liu L., Fleshner N.E., Bostrom P.J., Vis A.N., Alkhateeb S.S., Bangma C.H., Jewett M.A., Zwarthoff E.C., et al. The FGFR3 mutation is related to favorable pT1 bladder cancer. J. Urol. 2012;187:310–314.
    1. Kompier L.C., Lurkin I., van der Aa M.N., van Rhijn B.W., van der Kwast T.H., Zwarthoff E.C. FGFR3, HRAS, KRAS, NRAS and PIK3CA mutations in bladder cancer and their potential as biomarkers for surveillance and therapy. PLoS ONE. 2010;5:e13821. doi: 10.1371/journal.pone.0013821.
    1. Jebar A.H., Hurst C.D., Tomlinson D.C., Johnston C., Taylor C.F., Knowles M.A. FGFR3 and Ras gene mutations are mutually exclusive genetic events in urothelial cell carcinoma. Oncogene. 2005;24:5218–5225. doi: 10.1038/sj.onc.1208705.
    1. Williams S.V., Hurst C.D., Knowles M.A. Oncogenic FGFR3 gene fusions in bladder cancer. Hum. Mol. Genet. 2013;22:795–803. doi: 10.1093/hmg/dds486.
    1. Kim P.H., Cha E.K., Sfakianos J.P., Iyer G., Zabor E.C., Scott S.N., Ostrovnaya I., Ramirez R., Sun A., Shah R., et al. Genomic predictors of survival in patients with high-grade urothelial carcinoma of the bladder. Eur. Urol. 2015;67:198–201. doi: 10.1016/j.eururo.2014.06.050.
    1. Esrig D., Spruck C.H., 3rd, Nichols P.W., Chaiwun B., Steven K., Groshen S., Chen S.C., Skinner D.G., Jones P.A., Cote R.J. p53 nuclear protein accumulation correlates with mutations in the p53 gene, tumor grade, and stage in bladder cancer. Am. J. Pathol. 1993;143:1389–1397.
    1. Nordentoft I., Lamy P., Birkenkamp-Demtroder K., Shumansky K., Vang S., Hornshoj H., Juul M., Villesen P., Hedegaard J., Roth A., et al. Mutational context and diverse clonal development in early and late bladder cancer. Cell Rep. 2014;7:1649–1663. doi: 10.1016/j.celrep.2014.04.038.
    1. Jones T.D., Wang M., Eble J.N., MacLennan G.T., Lopez-Beltran A., Zhang S., Cocco A., Cheng L. Molecular evidence supporting field effect in urothelial carcinogenesis. Clin. Cancer Res. 2005;11:6512–6519. doi: 10.1158/1078-0432.CCR-05-0891.
    1. Van Batavia J., Yamany T., Molotkov A., Dan H., Mansukhani M., Batourina E., Schneider K., Oyon D., Dunlop M., Wu X.R., et al. Bladder cancers arise from distinct urothelial sub-populations. Nat. Cell Biol. 2014;16:982–991. doi: 10.1038/ncb3038.
    1. Chow N.H., Cairns P., Eisenberger C.F., Schoenberg M.P., Taylor D.C., Epstein J.I., Sidransky D. Papillary urothelial hyperplasia is a clonal precursor to papillary transitional cell bladder cancer. Int. J. Cancer. 2000;89:514–518. doi: 10.1002/1097-0215(20001120)89:6<514::AID-IJC8>;2-H.
    1. Mo L., Zheng X., Huang H.Y., Shapiro E., Lepor H., Cordon-Cardo C., Sun T.T., Wu X.R. Hyperactivation of Ha-ras oncogene, but not Ink4a/Arf deficiency, triggers bladder tumorigenesis. J. Clin. Investig. 2007;117:314–325. doi: 10.1172/JCI30062.
    1. Van Oers J.M., Adam C., Denzinger S., Stoehr R., Bertz S., Zaak D., Stief C., Hofstaedter F., Zwarthoff E.C., van der Kwast T.H., et al. Chromosome 9 deletions are more frequent than FGFR3 mutations in flat urothelial hyperplasias of the bladder. Int. J. Cancer. 2006;119:1212–1215. doi: 10.1002/ijc.21958.
    1. Glaser A.P., Fantini D., Shilatifard A., Schaeffer E.M., Meeks J.J. The evolving genomic landscape of urothelial carcinoma. Nat. Rev. Urol. 2017;14:215–229. doi: 10.1038/nrurol.2017.11.
    1. Downes M.R., Weening B., van Rhijn B.W., Have C.L., Treurniet K.M., van der Kwast T.H. Analysis of papillary urothelial carcinomas of the bladder with grade heterogeneity: Supportive evidence for an early role of CDKN2A deletions in the FGFR3 pathway. Histopathology. 2017;70:281–289. doi: 10.1111/his.13063.
    1. Kim M.S., Jeong J., Majewski T., Kram A., Yoon D.S., Zhang R.D., Li J.Z., Ptaszynski K., Kuang T.C., Zhou J.H., et al. Evidence for alternative candidate genes near RB1 involved in clonal expansion of in situ urothelial neoplasia. Lab. Investig. 2006;86:175–190. doi: 10.1038/labinvest.3700378.
    1. Jung S., Wu C., Eslami Z., Tanguay S., Aprikian A., Kassouf W., Brimo F. The role of immunohistochemistry in the diagnosis of flat urothelial lesions: A study using CK20, CK5/6, P53, Cd138, and Her2/Neu. Ann. Diagn. Pathol. 2014;18:27–32. doi: 10.1016/j.anndiagpath.2013.10.006.
    1. Perou C.M., Sorlie T., Eisen M.B., van de Rijn M., Jeffrey S.S., Rees C.A., Pollack J.R., Ross D.T., Johnsen H., Akslen L.A., et al. Molecular portraits of human breast tumours. Nature. 2000;406:747–752. doi: 10.1038/35021093.
    1. Korpal M., Lee E.S., Hu G., Kang Y. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J. Biol. Chem. 2008;283:14910–14914. doi: 10.1074/jbc.C800074200.
    1. Rosenberg J.E., Hoffman-Censits J., Powles T., van der Heijden M.S., Balar A.V., Necchi A., Dawson N., O’Donnell P.H., Balmanoukian A., Loriot Y., et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: A single-arm, multicentre, phase 2 trial. Lancet. 2016;387:1909–1920. doi: 10.1016/S0140-6736(16)00561-4.
    1. Roberts S.A., Lawrence M.S., Klimczak L.J., Grimm S.A., Fargo D., Stojanov P., Kiezun A., Kryukov G.V., Carter S.L., Saksena G., et al. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat. Genet. 2013;45:970–976. doi: 10.1038/ng.2702.
    1. Shah J.B., McConkey D.J., Dinney C.P. New strategies in muscle-invasive bladder cancer: On the road to personalized medicine. Clin. Cancer Res. 2011;17:2608–2612. doi: 10.1158/1078-0432.CCR-10-2770.
    1. Grossman H.B., Natale R.B., Tangen C.M., Speights V.O., Vogelzang N.J., Trump D.L., deVere White R.W., Sarosdy M.F., Wood D.P., Jr., Raghavan D., et al. Neoadjuvant chemotherapy plus cystectomy compared with cystectomy alone for locally advanced bladder cancer. N. Engl. J. Med. 2003;349:859–866. doi: 10.1056/NEJMoa022148.
    1. McConkey D.J., Choi W., Dinney C.P. New insights into subtypes of invasive bladder cancer: Considerations of the clinician. Eur. Urol. 2014;66:609–610. doi: 10.1016/j.eururo.2014.05.006.
    1. Cumberbatch M.G., Catto J.W.F. Re: Comprehensive Molecular Characterization of Muscle Invasive Bladder Cancer. Eur. Urol. 2018;73:479–480. doi: 10.1016/j.eururo.2017.11.022.
    1. Sharma P., Retz M., Siefker-Radtke A., Baron A., Necchi A., Bedke J., Plimack E.R., Vaena D., Grimm M.O., Bracarda S., et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): A multicentre, single-arm, phase 2 trial. Lancet Oncol. 2017;18:312–322. doi: 10.1016/S1470-2045(17)30065-7.
    1. Bellmunt J., de Wit R., Vaughn D.J., Fradet Y., Lee J.L., Fong L., Vogelzang N.J., Climent M.A., Petrylak D.P., Choueiri T.K., et al. Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma. N. Engl. J. Med. 2017;376:1015–1026. doi: 10.1056/NEJMoa1613683.
    1. Balar A.V., Castellano D., O’Donnell P.H., Grivas P., Vuky J., Powles T., Plimack E.R., Hahn N.M., de Wit R., Pang L., et al. First-line pembrolizumab in cisplatin-ineligible patients with locally advanced and unresectable or metastatic urothelial cancer (KEYNOTE-052): A multicentre, single-arm, phase 2 study. Lancet Oncol. 2017;18:1483–1492. doi: 10.1016/S1470-2045(17)30616-2.
    1. Balar A.V., Galsky M.D., Rosenberg J.E., Powles T., Petrylak D.P., Bellmunt J., Loriot Y., Necchi A., Hoffman-Censits J., Perez-Gracia J.L., et al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: A single-arm, multicentre, phase 2 trial. Lancet. 2017;389:67–76. doi: 10.1016/S0140-6736(16)32455-2.

Source: PubMed

3
Prenumerera