Multicolumn spinal cord stimulation for predominant back pain in failed back surgery syndrome patients: a multicenter randomized controlled trial

Philippe Rigoard, Surajit Basu, Mehul Desai, Rod Taylor, Lieven Annemans, Ye Tan, Mary Jo Johnson, Carine Van den Abeele, Richard North, PROMISE Study Group, Philippe Rigoard, Surajit Basu, Mehul Desai, Rod Taylor, Lieven Annemans, Ye Tan, Mary Jo Johnson, Carine Van den Abeele, Richard North, PROMISE Study Group

Abstract

Despite optimal medical management (OMM), low back pain (LBP) can be disabling, particularly after spinal surgery. Spinal cord stimulation (SCS) is effective in reducing neuropathic leg pain; however, evidence is limited for LBP. This prospective, open-label, parallel-group trial randomized (1:1) failed back surgery syndrome (FBSS) patients with predominant LBP to SCS plus OMM (SCS group) or OMM alone (OMM group) at 28 sites in Europe and the Americas. If trial stimulation was successful, a multicolumn SCS system was implanted. Outcomes were assessed at baseline (before randomization) and at 1, 3, 6, and 12 months after randomization. Patients could change treatment groups at 6 months. The primary outcome was the proportion of patients with ≥50% reduction in LBP (responder) at 6 months. Secondary outcomes included change in pain intensity, functional disability, and health-related quality of life (HRQoL). The results are posted at ClinicalTrials.gov under registration number NCT01697358. In the intent-to-treat analysis, there were more responders in the SCS group than in the OMM group (13.6%, 15/110 vs 4.6%, 5/108, difference 9% with 95% confidence interval 0.6%-17.5%, P = 0.036) at 6 months. The SCS group improved in all secondary outcomes compared with the OMM group. The OMM group only improved in HRQoL. In the SCS group, 17.6% (18/102) experienced SCS-related adverse events through 6 months, with 11.8% (12/102) requiring surgical reintervention. Adding multicolumn SCS to OMM improved pain relief, HRQoL, and function in a traditionally difficult-to-treat population of failed back surgery syndrome patients with predominant LBP. Improvements were sustained at 12 and 24 months.

Conflict of interest statement

Sponsorships or competing interests that may be relevant to content are disclosed at the end of this article.

Figures

Figure 1.
Figure 1.
CONSORT diagram of patient flow. OMM, optimal medical management; SCS, spinal cord stimulation.
Figure 2.
Figure 2.
Low back pain intensity, as-treated. OMM, optimal medical management; SCS, spinal cord stimulation.
Figure 3.
Figure 3.
Leg pain intensity, as-treated. OMM, optimal medical management; SCS, spinal cord stimulation.
Figure 4.
Figure 4.
Oswestry Disability Index, as-treated. ODI, Oswestry Disability Index; OMM, optimal medical management; SCS, spinal cord stimulation.

References

    1. Bouhassira D, Attal N, Alchaar H, Boureau F, Brochet B, Bruxelle J, Cunin G, Fermanian J, Ginies P, Grun-Overdyking A, Jafari-Schluep H, Lantéri-Minet M, Laurent B, Mick G, Serrie A, Valade D, Vicaut E. Comparison of pain syndromes associated with nervous or somatic lesions and development of a new neuropathic pain diagnostic questionnaire (DN4). PAIN 2005;114:29–36.
    1. Breivik H, Eisenberg E, O'Brien T. The individual and societal burden of chronic pain in Europe: the case for strategic prioritisation and action to improve knowledge and availability of appropriate care. BMC Public Health 2013;13:1229.
    1. Buysse DJ, Reynolds CF, III, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res 1989;28:193–213.
    1. Chan CW, Peng P. Failed back surgery syndrome. Pain Med 2011;12:577–606.
    1. Chapman JR, Norvell DC, Hermsmeyer JT, Bransford RJ, DeVine J, McGirt MJ, Lee MJ. Evaluating common outcomes for measuring treatment success for chronic low back pain. Spine (Phila PA 1976) 2011;36(21 suppl):S54–68.
    1. Clement RC, Welander A, Stowell C, Cha TD, Chen JL, Davies M, Fairbank JC, Foley KT, Gehrchen M, Hagg O, Jacobs WC, Kahler R, Khan SN, Lieberman IH, Morisson B, Ohnmeiss DD, Peul WC, Shonnard NH, Smuck MW, Solberg TK, Stromqvist BH, Hooff ML, Wasan AD, Willems PC, Yeo W, Fritzell P. A proposed set of metrics for standardized outcome reporting in the management of low back pain. Acta Orthop 2015;86:523–33.
    1. Deer T, Slavin KV, Amirdelfan K, North RB, Burton AW, Yearwood TL, Tavel E, Staats P, Falowski S, Pope J, Justiz R, Fabi AY, Taghva A, Paicius R, Houden T, Wilson D. Success using neuromodulation with BURST (SUNBURST) study: results from a prospective, randomized controlled trial using a novel burst waveform. Neuromodulation 2018;21:56–66.
    1. Desai MJ, Nava A, Rigoard P, Shah B, Taylor RS. Optimal medical, rehabilitation and behavioral management in the setting of failed back surgery syndrome. Neurochirurgie 2015;61:S66–76.
    1. Dworkin RH, Turk DC, Farrar JT, Haythornthwaite JA, Jensen MP, Katz NP, Kerns RD, Stucki G, Allen RR, Bellamy N, Carr DB, Chandler J, Cowan P, Dionne R, Galer BS, Hertz S, Jadad AR, Kramer LD, Manning DC, Martin S, McCormick CG, McDermott MP, McGrath P, Quessy S, Rappaport BA, Robbins W, Robinson JP, Rothman M, Royal MA, Simon L, Stauffer JW, Stein W, Tollett J, Wernicke J, Witter J. Core outcome measures for chronic pain clinical trials: IMMPACT recommendations. PAIN 2005;113:9–19.
    1. Fairbank JC, Pynsent PB. The Oswestry Disability Index. Spine 2000;25:2940–52; discussion 2952.
    1. Finnerup NB, Attal N, Haroutounian S, McNicol E, Baron R, Dworkin RH, Gilron I, Haanpää M, Hansson P, Jensen TS, Kamerman PR, Lund K, Moore A, Raja SN, Rice AS, Rowbotham M, Sena E, Siddall P, Smith BH, Wallace M. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol 2015;14:162–73.
    1. Herdman M, Gudex C, Lloyd A, Janssen M, Kind P, Parkin D, Bonsel G, Badia X. Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L). Qual Life Res 2011;20:1727–36.
    1. Hoy D, Brooks P, Blyth F, Buchbinder R. The epidemiology of low back pain. Best Pract Res Clin Rheumatol 2010;24:769–81.
    1. Hurst H, Bolton J. Assessing the clinical significance of change scores recorded on subjective outcome measures. J Manipulative Physiol Ther 2004;27:26–35.
    1. Juniper M, Le TK, Mladsi D. The epidemiology, economic burden, and pharmacological treatment of chronic low back pain in France, Germany, Italy, Spain and the UK: a literature-based review. Expert Opin Pharmacother 2009;10:2581–92.
    1. Kapural L, Peterson E, Provenzano DA, Staats P. Clinical evidence for spinal cord stimulation for failed back surgery syndrome (FBSS): systematic review. Spine (Phila PA 1976) 2017;42(suppl 14):S61–6.
    1. Kapural L, Yu C, Doust MW, Gliner BE, Vallejo R, Sitzman BT, Amirdelfan K, Morgan DM, Brown LL, Yearwood TL, Bundschu R, Burton AW, Yang T, Benyamin R, Burgher AH. Novel 10-kHz high-frequency therapy (HF10 therapy) is superior to traditional low-frequency spinal cord stimulation for the treatment of chronic back and leg pain. Anesthesiology 2015;123:851–60.
    1. Kumar K, Taylor RS, Jacques L, Eldabe S, Meglio M, Molet J, Thomson S, O'Callaghan J, Eisenberg E, Milbouw G, Buchser E, Fortini G, Richardson J, North RB. Spinal cord stimulation versus conventional medical management for neuropathic pain: a multicentre randomised controlled trial in patients with failed back surgery syndrome. PAIN 2007;132:179–88.
    1. Law JD, Lehman RA, Kirsch WM. Reoperation after lumbar intervertebral disc surgery. J Neurosurg 1978;48:259–63.
    1. Lehmann TR, LaRocca HS. Repeat lumbar surgery. A review of patients with failure from previous lumbar surgery treated by spinal canal exploration and lumbar spinal fusion. Spine (Phila PA 1976) 1981;6:615–19.
    1. Miller JP, Eldabe S, Buchser E, Johanek LM, Guan Y, Linderoth B. Parameters of spinal cord stimulation and their role in electrical charge delivery: a review. Neuromodulation 2016;19:373–84.
    1. Moher D, Hopewell S, Schulz KF, Montori V, Gøtzsche PC, Devereaux PJ, Elbourne D, Egger M, Altman DG. CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. Int J Surg 2012;10:28–55.
    1. Murphy KR, Han JL, Yang S, Hussaini SM, Elsamadicy AA, Parente B, Xie J, Pagadala P, Lad SP. Prevalence of specific types of pain diagnoses in a sample of United States adults. Pain Physician 2017;20:E257–68.
    1. North RB, Kidd DH, Farrokhi F, Piantadosi SA. Spinal cord stimulation versus repeated lumbosacral spine surgery for chronic pain: a randomized, controlled trial. Neurosurgery 2005;56:98–106; discussion 106–7.
    1. North RB, Kidd DH, Olin J, Sieracki JM, Farrokhi F, Petrucci L, Cutchis PN. Spinal cord stimulation for axial low back pain: a prospective, controlled trial comparing dual with single percutaneous electrodes. Spine (Phila PA 1976) 2005;30:1412–18.
    1. Remacle TY, Bonhomme VL, Renwart HP, Remacle JM. Effect of multicolumn lead spinal cord stimulation on low back pain in failed back surgery patients: a three-year follow-up. Neuromodulation 2017;20:668–74.
    1. Rigoard P, Delmotte A, D'Houtaud S, Misbert L, Diallo B, Roy-Moreau A, Durand S, Royoux S, Giot JP, Bataille B. Back pain: a real target for spinal cord stimulation? Neurosurgery 2012;70:574–84; discussion 584–5.
    1. Rigoard P, Desai MJ, North RB, Taylor RS, Annemans L, Greening C, Tan Y, Van den Abeele C, Shipley J, Kumar K. Spinal cord stimulation for predominant low back pain in failed back surgery syndrome: study protocol for an international multicenter randomized controlled trial (PROMISE study). Trials 2013;14:376.
    1. Rigoard P, Jacques L, Delmotte A, Poon K, Munson R, Monlezun O, Roulaud M, Prevost A, Guetarni F, Bataille B, Kumar K. An algorithmic programming approach for back pain symptoms in failed back surgery syndrome using spinal cord stimulation with a multicolumn surgically implanted epidural lead: a multicenter international prospective study. Pain Pract 2015;15:195–207.
    1. Slavin KV, North RB, Deer TR, Staats P, Davis K, Diaz R. Tonic and burst spinal cord stimulation waveforms for the treatment of chronic, intractable pain: study protocol for a randomized controlled trial. Trials 2016;17:569.
    1. Taylor RS, Desai MJ, Rigoard P, Taylor RJ. Predictors of pain relief following spinal cord stimulation in chronic back and leg pain and failed back surgery syndrome: a systematic review and meta-regression analysis. Pain Pract 2014;14:489–505.
    1. Taylor RS, Van Buyten JP, Buchser E. Spinal cord stimulation for chronic back and leg pain and failed back surgery syndrome: a systematic review and analysis of prognostic factors. Spine (Phila PA 1976) 2005;30:152–60.
    1. Turner JA, Loeser JD, Deyo RA, Sanders SB. Spinal cord stimulation for patients with failed back surgery syndrome or complex regional pain syndrome: a systematic review of effectiveness and complications. PAIN 2004;108:137–47.
    1. Van Deursen LLJM, Snijders CJ, Patun J. Influence of daily life activities on pain in patients with low back pain. J Orthopaedic Med 2002;24:74–6.
    1. Ware JE, Kosinski M, Bjorner JB, Turner-Bowker DM, Gandek B, Maruish ME. User's manual for the SF-36v2 health survey. Lincoln: Quality Metric; Incorporated, 2007.

Source: PubMed

3
Prenumerera