Increased default-mode variability is related to reduced task-performance and is evident in adults with ADHD

Athanasia M Mowinckel, Dag Alnæs, Mads L Pedersen, Sigurd Ziegler, Mats Fredriksen, Tobias Kaufmann, Edmund Sonuga-Barke, Tor Endestad, Lars T Westlye, Guido Biele, Athanasia M Mowinckel, Dag Alnæs, Mads L Pedersen, Sigurd Ziegler, Mats Fredriksen, Tobias Kaufmann, Edmund Sonuga-Barke, Tor Endestad, Lars T Westlye, Guido Biele

Abstract

Insufficient suppression and connectivity of the default mode network (DMN) is a potential mediator of cognitive dysfunctions across various disorders, including attention deficit/hyperactivity disorder (ADHD). However, it remains unclear if alterations in sustained DMN suppression, variability and connectivity during prolonged cognitive engagement are implicated in adult ADHD pathophysiology, and to which degree methylphenidate (MPH) remediates any DMN abnormalities. This randomized, double-blinded, placebo-controlled, cross-over clinical trial of MPH (clinicaltrials.gov/ct2/show/NCT01831622) explored large-scale brain network dynamics in 20 adults with ADHD on and off MPH, compared to 27 healthy controls, while performing a reward based decision-making task. DMN task-related activation, variability, and connectivity were estimated and compared between groups and conditions using independent component analysis, dual regression, and Bayesian linear mixed models. The results show that the DMN exhibited more variable activation patterns in unmedicated patients compared to healthy controls. Group differences in functional connectivity both between and within functional networks were evident. Further, functional connectivity between and within attention and DMN networks was sensitive both to task performance and case-control status. MPH altered within-network connectivity of the DMN and visual networks, but not between-network connectivity or temporal variability. This study thus provides novel fMRI evidence of reduced sustained DMN suppression in adults with ADHD during value-based decision-making, a pattern that was not alleviated by MPH. We infer from multiple analytical approaches further support to the default mode interference hypothesis, in that higher DMN activation variability is evident in adult ADHD and associated with lower task performance.

Keywords: Adult ADHD; DMN; Decision-making; Dopamine; Functional networks; Reward; fMRI.

Figures

Fig. 1
Fig. 1
Network overview. The 18 nodes identified from the independent component analysis, classified into networks by referencing the Smith et al. (2009) published ICA atlas. Purple = frontoparietal network; Dark blue = orbitofrontal cortex (OFC); Light blue = sensorimotor; Orange = cerebellum; Red = default mode network (DMN); Dark green = visual network; Yellow = auditory network; Light green = subcortical network; Pink = executive control network (Exec.Contr.). (For interpretation of the references to color in this figure legend, the reader is referred to the online version of this chapter.)
Fig. 2
Fig. 2
Node change by decision-making task parameters. Eleven nodes showed credible difference between groups in relation to decision phase and/or trial accuracy. Triangles are the estimated mean distributions for the groups, circles are the calculated difference distributions between groups (effect of ADHD: controls-placebo; effect of MPH: methylphenidate-placebo). The error bars denote the 95% highest density interval of the distributions. Solid horizontal lines are the value limits of the plots. Particularly DMN node 1 showed interesting negative co-variation with both decision phase and accuracy, which was stronger in the patient placebo condition compared to controls in the decision-phase. The node with the strongest positive association with choice onset was frontoparietal node 6 (DAN), where controls show increased activity compared to patients. This node encompasses the intraparietal sulcus, an area implicated in evidence accumulation in value-based decision-making (Basten et al., 2010). Activation in node 5 (executive control) showed a strong negative association with trial accuracy, which was more pronounced in controls compared to patients. Cereb. = cerebellum; DMN = default mode network; Exec.Contr. = executive control network; Frontopari. = frontoparietal network; Subcort. = subcortical network.
Fig. 3
Fig. 3
Component time series signal variance and the DMN. Nodes showing credible difference between groups/conditions with regards to node variance. Triangles are the estimated mean distributions for the groups, circles are the calculated difference distributions between groups (effect of ADHD: controls- placebo; effect of MPH: methylphenidate-placebo). (B) The DMN temporal variance showed negative correlation to task accuracy, participants who performed well on the task also had little variance in the DMN, with no difference between the groups. (C) The precuneus was more strongly connected to the rest of the DMN when patients were on placebo than on methylphenidate (C left: inflated brain). Mean connectivity scores (error bars are 2 * standard deviation in both directions) from this ROI (p 

Fig. 4

Edge correlations. Top panel: Triangles…

Fig. 4

Edge correlations. Top panel: Triangles are the estimated mean distributions for the groups,…

Fig. 4
Edge correlations. Top panel: Triangles are the estimated mean distributions for the groups, circles are the calculated difference distributions between groups. Error bars denote the 95% highest density interval of the distribution. Bottom two rows depict the two nodes connected by the edge. Bottom panels: Graph representation of edges between nodes for contrasts between patients when on placebo and controls (left), and edges correlated with overall task accuracy that are also different between patients and controls (right). Blue lines indicate a negative difference; red lines indicate a positive difference. The line thickness represents the magnitude of the difference. (For interpretation of the references to color in this figure legend, the reader is referred to the online version of this chapter.)
Fig. 4
Fig. 4
Edge correlations. Top panel: Triangles are the estimated mean distributions for the groups, circles are the calculated difference distributions between groups. Error bars denote the 95% highest density interval of the distribution. Bottom two rows depict the two nodes connected by the edge. Bottom panels: Graph representation of edges between nodes for contrasts between patients when on placebo and controls (left), and edges correlated with overall task accuracy that are also different between patients and controls (right). Blue lines indicate a negative difference; red lines indicate a positive difference. The line thickness represents the magnitude of the difference. (For interpretation of the references to color in this figure legend, the reader is referred to the online version of this chapter.)

References

    1. Alnæs D., Kaufmann T., Richard G., Duff E.P., Sneve M.H., Endestad T., Nordvik J.E., Andreassen O.A., Smith S.M., Westlye L.T. Attentional load modulates large-scale functional brain connectivity beyond the core attention networks. NeuroImage. 2015;109:260–272.
    1. American Psychiatric Association . fifth ed. American Psychiatric Pub; 2013. Diagnostic and Statistical Manual of Mental Disorders.
    1. American Psychiatric Association, [APA] 1994. Diagnostic and Statistical Manual of Mental Disorders DSM-IV.
    1. Andrews-Hanna J.R., Reidler J.S., Sepulcre J., Poulin R., Buckner R.L. Functional-anatomic fractionation of the Brain's default network. Neuron. 2010;65:550–562.
    1. Arnsten A.F.T. Stimulants: therapeutic actions in ADHD. Neuropsychopharmacology. 2006;31:2376–2383.
    1. Bäckman L., Lindenberger U., Li S.-C.C., Nyberg L. Linking cognitive aging to alterations in dopamine neurotransmitter functioning: recent data and future avenues. Neurosci. Biobehav. Rev. 2010;34:670–677.
    1. Barkley R.A., Edwards G., Laneri M., Fletcher K., Metevia L. Executive functioning, temporal discounting, and sense of time in adolescents with attention deficit hyperactivity disorder (ADHD) and oppositional defiant disorder (ODD) J. Abnorm. Child Psychol. 2001;29:541–556.
    1. Basten U., Biele G., Heekeren H.R., Fiebach C.J. How the brain integrates costs and benefits during decision making. Proc. Natl. Acad. Sci. U. S. A. 2010;107:21767–21772.
    1. Beckmann C.F., Smith S.M. Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans. Med. Imaging. 2004;23:137–152.
    1. Biederman J., Petty C.R., Clarke A., Lomedico A., Faraone S.V. Predictors of persistent ADHD: an 11-year follow-up study. J. Psychiatr. Res. 2011;45:150–155.
    1. Bush G., Spencer T.J., Holmes J., Shin L.M., Valera E.M., Seidman L.J., Makris N., Surman C.B.H., Aleardi M., Mick E., Biederman J. Functional magnetic resonance imaging of methylphenidate and placebo in attention-deficit/hyperactivity disorder during the multi-source interference task. Arch. Gen. Psychiatry. 2008;65:102–114.
    1. Bymaster F.P., Katner J.S., Nelson D.L., Hemrick-luecke S.K., Threlkeld P.G., Heiligenstein J.H., Morin S.M., Gehlert D.R., Perry K.W. 2002. Atomoxetine Increases Extracellular Levels of Norepinephrine and Dopamine in Prefrontal Cortex of Rat: A Potential Mechanism for Efficacy in Attention Deficit/Hyperactivity Disorder.
    1. Carpenter B., Gelman A., Hoffman M., Lee D., Goodrich B., Betancourt M., Brubaker M., Guo J., Li P., Riddell A. Stan: A Probabilistic Programming Language. J. Stat. Softw. 2017;76(1):1–32.
    1. Castellanos X.F., Proal E. Large-scale brain systems in ADHD: beyond the prefrontal-striatal model. Trends Cogn. Sci. 2012;16:17–26.
    1. Castellanos X.F., Margulies D.S., Kelly C., Uddin L.Q., Ghaffari M., Kirsch A., Shaw D., Shehzad Z., Di Martino A., Biswal B.B., Sonuga-Barke E.J.S., Rotrosen J., Adler L.A., Milham M.P. Cingulate-Precuneus interactions: a new locus of dysfunction in adult attention-deficit/hyperactivity disorder. Biol. Psychiatry. 2008;63:332–337.
    1. Chadick J.Z., Gazzaley A. Differential coupling of visual cortex with default or frontal-parietal network based on goals. Nat. Neurosci. 2011;14:830–832.
    1. Cortese S., Kelly C., Chabernaud C., Proal E., Di Martino A., Milham M.P., Castellanos X.F. Toward systems neuroscience of ADHD: a meta-analysis of 55 fMRI studies. Am. J. Psychiatry. 2012;169:1038–1055.
    1. Deco G., Jirsa V.K., McIntosh A.R. Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat. Rev. Neurosci. 2011;12:43–56.
    1. Dørum E.S., Alnæs D., Kaufmann T., Richard G., Lund M.J., Tønnesen S., Sneve M.H., Mathiesen N.C., Rustan Ø.G., Gjertsen Ø., Vatn S., Fure B., Andreassen O.A., Nordvik J.E., Westlye L.T. Age-related differences in brain network activation and co-activation during multiple object tracking. Brain Behav. 2016;6(11):e00533. Published online 2016 Sep 7.
    1. Epstein J.N., Casey B.J., Tonev S.T., Davidson M.C., Reiss A.L., Garrett A., Hinshaw S.P., Greenhill L.L., Glover G., Shafritz K.M., Vitolo A., Kotler L.A., Jarrett M.A., Spicer J. ADHD- and medication-related brain activation effects in concordantly affected parent-child dyads with ADHD. J. Child Psychol. Psychiatry Allied Discip. 2007;48:899–913.
    1. Fair D.A., Cohen A.L., Dosenbach N.U., Church J.A., Miezin F.M., Barch D.M., Raichle M.E., Petersen S.E., Schlaggar B.L. The maturing architecture of the brain's default network. Proc. Natl. Acad. Sci. U. S. A. 2008;105:4028–4032.
    1. Fair D.a., Posner J., Nagel B.J., Bathula D.R., Costa-Dias T.G., Mills K.L., Blythe M.S., Giwa A., Schmitt C.F., Joel T. Atypical default network connectivity in youth with ADHD. Biol. Psychiatry. 2010;68:1084–1091.
    1. Faisal A.A., Selen L.P.J., Wolpert D.M. Noise in the nervous system. Nat. Rev. Neurosci. 2008;9:292–303.
    1. Fassbender C., Zhang H., Buzy W.M., Cortes C.R., Mizuiri D., Beckett L., Schweitzer J.B. A lack of default network suppression is linked to increased distractibility in ADHD. Brain Res. 2009;1273:114–128.
    1. Filippini N., MacIntosh B.J., Hough M.G., Goodwin G.M., Frisoni G.B., Smith S.M., Matthews P.M., Beckmann C.F., Mackay C.E. Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. PNAS. 2009;106:7209–7214.
    1. Fischer F., Cho K. Release of dopamine release. J. Pharmacol. Exp. Ther. 1979;208:203–209.
    1. Fredriksen M., Peleikis D.E. Long-term pharmacotherapy of adults with attention-deficit/hyperactivity disorder (ADHD): a literature review and clinical study. Basic Clin. Pharmacol. Toxicol. 2015
    1. Furl N., Averbeck B.B. Parietal cortex and insula relate to evidence seeking relevant to reward-related decisions. J. Neurosci. 2011;31:17572–17582.
    1. Garrett D.D., Nagel I.E., Preuschhof C., Burzynska A.Z., Marchner J., Wiegert S., Jungehülsing G.J., Nyberg L., Villringer A., Li S.-C., Heekeren H.R., Bäckman L., Lindenberger U. Amphetamine modulates brain signal variability and working memory in younger and older adults. Proc. Natl. Acad. Sci. U. S. A. 2015;112:7593–7598.
    1. Gelman A., Rubin D.B. Inference from iterative simulation using multiple sequences. Stat. Sci. 1992;7:457–511.
    1. Gelman A., Tuerlinckx F. Type S error rates for classical and Bayesian single and multiple comparison procedures. Comput. Stat. 2000;15:373–390.
    1. Gelman A., Hill J., Yajima M. Why we (usually) don't have to worry about multiple comparisons. J. Res. Educ. Eff. 2012;5:189–211.
    1. Ghosh A., Rho Y., McIntosh A.R., Kötter R., Jirsa V.K. Noise during rest enables the exploration of the brain's dynamic repertoire. PLoS Comput. Biol. 2008;4
    1. Grace A.A., Floresco S.B., Goto Y., Lodge D.J. Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends Neurosci. 2007;30:220–227.
    1. Grady C.L., Garrett D.D. Understanding variability in the BOLD signal and why it matters for aging. Brain Imaging Behav. 2014;8:274–283.
    1. Guitart-Masip M., Salami A., Garrett D., Rieckmann A., Lindenberger U., Bäckman L. BOLD variability is related to dopaminergic neurotransmission and cognitive aging. Cereb. Cortex. 2015
    1. Haatveit B., Jensen J., Alnæs D., Kaufmann T., Brandt C.L., Thoresen C., Andreassen O.A., Melle I., Ueland T., Westlye L.T. Reduced load-dependent default mode network deactivation across executive tasks in schizophrenia spectrum disorders. NeuroImage Clin. 2016
    1. Han D.D., Gu H.H. Comparison of the monoamine transporters from human and mouse in their sensitivities to psychostimulant drugs. BMC Pharmacol. 2006;6:6.
    1. Hare T.A., O'Doherty J., Camerer C.F., Schultz W., Rangel A. Dissociating the role of the orbitofrontal cortex and the striatum in the computation of goal values and prediction errors. J. Neurosci. 2008;28:5623–5630.
    1. Hines J.L., King T.S., Curry W.J. The adult ADHD self-report scale for screening for adult attention deficit-hyperactivity disorder (ADHD) J. Am. Board Fam. Med. 2012;25:847–853.
    1. Hoekzema E., Carmona S., Ramos-Quiroga J.A., Richarte Fernández V., Bosch R., Soliva J.C., Rovira M., Bulbena A., Tobeña A., Casas M., Vilarroya O. An independent components and functional connectivity analysis of resting state fMRI data points to neural network dysregulation in adult ADHD. Hum. Brain Mapp. 2013;35:1261–1272.
    1. Howes O.D., Kapur S. The dopamine hypothesis of schizophrenia: version III - the final common pathway. Schizophr. Bull. 2009;35:549–562.
    1. Jenkinson M., Beckmann C.F., Behrens T.E.J., Woolrich M.W., Smith S.M. FSL. NeuroImage. 2012;62:782–790.
    1. Kaufmann T., Elvsåshagen T., Alnæs D., Zak N., Pedersen P., Norbom L.B., Quraishi S.H., Tagliazucchi E., Laufs H., Bjørnerud A., Malt U.F., Andreassen O.A., Roussos E., Duff E.P., Smith S.M., Groote I.R., Westlye L.T. The brain functional connectome is robustly altered by lack of sleep. NeuroImage. 2016;127:324–332.
    1. Kelly R.E., Wang Z., Alexopoulos G.S., Gunning F.M., Murphy C.F., Morimoto S.S., Kanellopoulos D., Jia Z., Lim K.O., Hoptman M.J. Hybrid ICA-seed-based methods for fMRI functional connectivity assessment: A feasibility study. Int. J. Biomed. Imaging. 2010:2010.
    1. Kessler R.C., Adler L.A., Gruber M.J., Sarawate C.a., Spencer T.J., Van Brunt D.L., Brunt D.L. Van. Validity of the World Health Organization adult ADHD self-report scale (ASRS) screener in a representative sample of health plan members. Int. J. Methods Psychiatr. Res. 2007;16:52–65.
    1. Kessler D., Angstadt M., Welsh R.C., Sripada C.S., Kessler X.D., Angstadt X.M., Welsh R.C., Sripada X.C., Kessler D., Angstadt M., Welsh R.C., Sripada C.S., Kessler X.D., Angstadt X.M., Welsh R.C., Sripada X.C., Kessler D., Angstadt M., Welsh R.C., Sripada C.S., Kessler X.D., Angstadt X.M., Welsh R.C., Sripada X.C., Kessler D., Angstadt M., Welsh R.C., Sripada C.S., Kessler X.D. Modality-spanning deficits in attention-deficit/hyperactivity disorder in functional networks, gray matter, and white matter. J. Neurosci. 2014;34:16555–16566.
    1. Kline R.L., Zhang S., Farr O.M., Hu S., Zaborzsky L., Samanez-Larkin G.R., Li C.R. The effects of methylphenidate on resting-state functional connectivity of the basal nucleus of Meynert, locus coeruleus, and ventral tegmental area in healthy adults. Front. Hum. Neurosci. 2016;10:1–16.
    1. Krugel L.K., Biele G., Mohr P.N.C., Li S.-C., Heekeren H.R. Genetic variation in dopaminergic neuromodulation influences the ability to rapidly and flexibly adapt decisions. Proc. Natl. Acad. Sci. U. S. A. 2009;106:17951–17956.
    1. Ledoit O., Wolf M. Improved estimation of the covariance matrix of stock returns with an application to portfolio selection. J. Empir. Financ. 2003;10:603–621.
    1. Liddle E.B., Hollis C., Batty M.J., Groom M.J., Totman J.J., Liotti M., Scerif G., Liddle P.F. Task-related default mode network modulation and inhibitory control in ADHD: effects of motivation and methylphenidate. J. Child Psychol. Psychiatry Allied Discip. 2011;52:761–771.
    1. Meneses A., Perez-Garcia G., Ponce-Lopez T., Tellez R., Gallegos-Cari A., Castillo C. Spontaneously hypertensive rat (SHR) as an animal model for ADHD: a short overview. Rev. Neurosci. 2011;22:365–371.
    1. Metin B., Krebs R.M., Wiersema J.R., Verguts T., Gasthuys R., Van Der Meere J.J., Achten E., Roeyers H., Sonuga-Barke E.J.S. Dysfunctional modulation of default mode network activity in attention-deficit/hyperactivity disorder. J. Abnorm. Psychol. 2015;124:208–214.
    1. Miller G.A., Chapman J.P. Misunderstanding analysis of covariance. J. Abnorm. Psychol. 2001;110:40–48.
    1. Mostofsky S.H., Rimrodt S.L., Schafer J.G., Boyce A., Goldberg M.C., Pekar J.J., Denckla M.B. Atypical motor and sensory cortex activation in attention-deficit/hyperactivity disorder: a functional magnetic resonance imaging study of simple sequential finger tapping. Biol. Psychiatry. 2006;59:48–56.
    1. Mowinckel A.M., Pedersen M.L., Eilertsen E., Biele G. A meta-analysis of decision-making and attention in adults with ADHD. J. Atten. Disord. 2015;19:355–367.
    1. Mowinckel, A.M., Pedersen, M.L., Ziegler, S., Fredriksen, M., Bjørnerud, A., Endestad, T., Biele, G., n.d. Methylphenidate Alleviates Aberrant Processing of Gain Information During Value-based Decision-making in Adult ADHD: A Randomized Placebo-controlled Clinical Trial. (submitted).
    1. Mumford J.A., Poline J.B., Poldrack R.A. Orthogonalization of regressors in fMRI models. PLoS One. 2015;10:1–11.
    1. Nagano-Saito A., Leyton M., Monchi O., Goldberg Y.K., He Y., Dagher A. Dopamine depletion impairs frontostriatal functional connectivity during a set-shifting task. J. Neurosci. 2008;28:3697–3706.
    1. Peterson B.S., Potenza M.N., Wang Z., Zhu H., Martin A., Marsh R., Plessen K.J., Yu S. An fMRI study of the effects of psychostimulants on default- mode processing during Stroop task performance in youths with ADHD. Am. J. Psychiatry. 2009;166:1286–1294.
    1. Pruim R.H.R., Mennes M., Buitelaar J.K., Beckmann C.F. Evaluation of ICA-AROMA and alternative strategies for motion artifact removal in resting state fMRI. NeuroImage. 2015;112:278–287.
    1. RCore Team R . R Found. Stat. Comput; Vienna, Austria: 2013. A Language and Environment for Statistical Computing.
    1. Rubia K. Functional brain imaging across development. Eur. Child Adolesc. Psychiatry. 2013;22:719–731.
    1. Sagvolden T., Metzger M.A., Schiorbeck H.K., Rugland A.L., Spinnangr I., Sagvolden G. The spontaneously hypertensive rat (SHR) as an animal model of childhood hyperactivity (ADHD): changed reactivity to reinforcers and to psychomotor stimulants. Behav. Neural Biol. 1992;58:103–112.
    1. Sagvolden T., Aase H., Johansen E.B., Russell V.A. A dynamic developmental theory of attention-deficit/hyperactivity disorder (ADHD) predominantly hyperactive/impulsive and combined subtypes. Behav. Brain Sci. 2005;28:397–486.
    1. Salimi-Khorshidi G., Smith S.M., Nichols T.E. Adjusting the effect of nonstationarity in cluster-based and TFCE inference. NeuroImage. 2011;54:2006–2019.
    1. Salimi-Khorshidi G., Douaud G., Beckmann C.F., Glasser M.F., Griffanti L., Smith S.M. Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers. NeuroImage. 2014;90:449–468.
    1. Schrantee A., Tamminga H.G.H., Bouziane C., Bottelier M.A., Bron E.E., Mutsaerts H.-J.M.M., Zwinderman A.H., Groote I.R., Rombouts S.A.R.B., Lindauer R.J.L., Klein S., Niessen W.J., Opmeer B.C., Boer F., Lucassen P.J., Andersen S.L., Geurts H.M., Reneman L. Age-dependent effects of methylphenidate on the human dopaminergic system in young vs adult patients with attention-deficit/hyperactivity disorder. JAMA Psychiatry. 2016
    1. Schroeter S., Apparsundaram S., Wiley R.G., Miner L.H., Sesack S.R., Blakely R.D. Immunolocalization of the cocaine- and antidepressant-sensitive 1-norepinephrine transporter. J. Comp. Neurol. 2000;420:211–232.
    1. Seeman P., Madras B.K. Anti-hyperactivity medication: methylphenidate and amphetamine. Mol. Psychiatry. 1998;3:386–396.
    1. Ségonne F., Dale A.M., Busa E., Glessner M., Salat D., Hahn H.K., Fischl B. A hybrid approach to the skull stripping problem in MRI. NeuroImage. 2004;22:1060–1075.
    1. Seidman L.J., Biederman J., Faraone S.V., Weber W., Ouellette C. Toward defining a neuropsychology of attention deficit-hyperactivity disorder: performance of children and adolescents from a large clinically referred sample. J. Consult. Clin. Psychol. 1997;65:150–160.
    1. Sidlauskaite J., Sonuga-Barke E.J..S., Roeyers H., Wiersema J.R. Default mode network abnormalities during state switching in attention deficit hyperactivity disorder. Psychol. Med. 2016;46:519–528.
    1. Smith S.M., Fox P.T., Miller K.L., Glahn D.C., Fox P.M., Mackay C.E., Filippini N., Watkins K.E., Toro R., Laird A.R., Beckmann C.F. Correspondence of the brain's functional architecture during activation and rest. Proc. Natl. Acad. Sci. U. S. A. 2009;106:13040–13045.
    1. Smith S.M., Hyvärinen A., Varoquaux G., Miller K.L., Beckmann C.F. Group-PCA for very large fMRI datasets. NeuroImage. 2014;101:738–749.
    1. Sonuga-Barke E.J.S.S., Castellanos X.F. Spontaneous attentional fluctuations in impaired states and pathological conditions: a neurobiological hypothesis. Neurosci. Biobehav. Rev. 2007;31:977–986.
    1. Sonuga-Barke E.J..S., Cortese S., Fairchild G., Stringaris A. Annual research review: transdiagnostic neuroscience of child and adolescent mental disorders - differentiating decision making in attention-deficit/hyperactivity disorder, conduct disorder, depression, and anxiety. J. Child Psychol. Psychiatry Allied Discip. 2016;57:321–349.
    1. Sripada C.S., Kessler D., Welsh R., Angstadt M., Liberzon I., Phan K.L., Scott C. Distributed effects of methylphenidate on the network structure of the resting brain: a connectomic pattern classification analysis. NeuroImage. 2013;81:213–221.
    1. Sripada C.S., Kessler D., Angstadt M. Lag in maturation of the brain's intrinsic functional architecture in attention-deficit/hyperactivity disorder. Proc. Natl. Acad. Sci. U. S. A. 2014;111:14259–14264.
    1. Stan Development Team . 2015. Pkg{Stan} Modeling Language: User's Guide and Reference Manual. Interact. Flow Model. Lang.
    1. Stan Development Team . 2016. Rstan: The R Interface to Stan, Version 2.9.0.
    1. Ströhle A., Stoy M., Wrase J., Schwarzer S., Schlagenhauf F., Huss M., Hein J., Nedderhut A., Neumann B., Gregor A., Juckel G., Knutson B., Lehmkuhl U., Bauer M., Heinz A. Reward anticipation and outcomes in adult males with attention-deficit/hyperactivity disorder. NeuroImage. 2008;39:966–972.
    1. Tomasi D., Volkow N.D., Wang R., Telang F., Wang G.J., Chang L., Ernst T., Fowler J.S. Dopamine transporters in striatum correlate with deactivation in the default mode network during visuospatial attention. PLoS One. 2009;4
    1. Uddin L.Q., Kelly A.M.C., Biswal B.B., Margulies D.S., Shehzad Z., Shaw D., Ghaffari M., Rotrosen J., Adler L.A., Castellanos X.F., Milham M.P. Network homogeneity reveals decreased integrity of default-mode network in ADHD. J. Neurosci. Methods. 2008;169:249–254.
    1. Uddin L.Q., Kelly A.M.C., Biswal B.B., Castellanos X.F., Milham M.P. Functional connectivity of default mode network components: correlation, anticorrelation, and causality. Hum. Brain Mapp. 2009;30:625–637.
    1. Vehtari A., Gelman A., Gabry J. 2015. Efficient Implementation of Leave-One-Out Cross-validation and WAIC for Evaluating Fitted Bayesian Models.
    1. Volkow N.D., Wang G., Fowler J.S., Logan J., Gerasimov M., Maynard L., Ding Y.S., Gatley S.J., Gifford A., Franceschi D. Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human brain. J. Neurosci. 2001;21:RC121. (doi:20014896 [pii])
    1. Volkow N.D., Wang G.J., Fowler J.S., Ding Y.S. Imaging the effects of methylphenidate on brain dopamine: new model on its therapeutic actions for attention-deficit/hyperactivity disorder. Biol. Psychiatry. 2005;57:1410–1415.
    1. Volkow N.D., Wang G.J., Newcorn J., Fowler J.S., Telang F., Solanto M.V., Logan J., Wong C., Ma Y., Swanson J.M., Schulz K.P., Pradhan K. Brain dopamine transporter levels in treatment and drug naive adults with ADHD. NeuroImage. 2007;34:1182–1190.
    1. Volkow N.D., Wang G.-J., Kollins S.H., Wigal T.L., Newcorn J.H., Telang F.W., Fowler J.S., Zhu W., Logan J., Ma Y., Pradhan K., Wong C., Swanson J.M. Evaluating dopamine reward pathway in ADHD: clinical implications. JAMA. 2009;302:1084–1091.
    1. Vossel S., Geng J.J., Fink G.R. Dorsal and ventral attention systems distinct neural circuits but collaborative roles. Neurosci. 2014;20:150–159.
    1. Wang M., Arteaga D., He B.J. Brain mechanisms for simple perception and bistable perception. Proc. Natl. Acad. Sci. 2013;110:E3350–E3359.
    1. Weissman D.H., Roberts K.C., Visscher K.M., Woldorff M.G. The neural bases of momentary lapses in attention. Nat. Neurosci. 2006;9:971–978.
    1. Wilbertz G., Tebartz van Elst L., Delgado M.R., Maier S., Feige B., Philipsen A., Blechert J. Orbitofrontal reward sensitivity and impulsivity in adult attention deficit hyperactivity disorder. NeuroImage. 2012;60:353–361.
    1. Winkler A.M., Ridgway G.R., Webster M.A., Smith S.M., Nichols T.E. Permutation inference for the general linear model. NeuroImage. 2014;92:381–397.
    1. Ziegler S., Pedersen M.L., Mowinckel A.M., Biele G. Modelling ADHD: a review of ADHD theories' predictions for computational models of decision-making and reinforcement learning. Neurosci. Biobehav. Rev. 2016;71 (under revision)

Source: PubMed

3
Prenumerera