Artificial Intelligence Applications in Dermatology: Where Do We Stand?

Arieh Gomolin, Elena Netchiporouk, Robert Gniadecki, Ivan V Litvinov, Arieh Gomolin, Elena Netchiporouk, Robert Gniadecki, Ivan V Litvinov

Abstract

Artificial intelligence (AI) has become a progressively prevalent Research Topic in medicine and is increasingly being applied to dermatology. There is a need to understand this technology's progress to help guide and shape the future for medical care providers and recipients. We reviewed the literature to evaluate the types of publications on the subject, the specific dermatological topics addressed by AI, and the most challenging barriers to its implementation. A substantial number of original articles and commentaries have been published to date and only few detailed reviews exist. Most AI applications focus on differentiating between benign and malignant skin lesions, however; others exist pertaining to ulcers, inflammatory skin diseases, allergen exposure, dermatopathology, and gene expression profiling. Applications commonly analyze and classify images, however, other tools such as risk assessment calculators are becoming increasingly available. Although many applications are technologically feasible, important implementation barriers have been identified including systematic biases, difficulty of standardization, interpretability, and acceptance by physicians and patients alike. This review provides insight into future research needs and possibilities. There is a strong need for clinical investigation in dermatology providing evidence of success overcoming the identified barriers. With these research goals in mind, an appropriate role for AI in dermatology may be achieved in not so distant future.

Keywords: artificial intelligence; barriers; contact allergens; dermatology; machine learning; melanoma; nevi; psoriasis.

Copyright © 2020 Gomolin, Netchiporouk, Gniadecki and Litvinov.

References

    1. El-Azhary RA. The inevitability of change. Clin Dermatol. (2019) 37:4–11. 10.1016/j.clindermatol.2018.09.003
    1. Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, et al. . Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. (2017) 2:230–43. 10.1136/svn-2017-000101
    1. Polesie S, Gillstedt M, Kittler H, Lallas A, Tschandl P, Zalaudek I, et al. . Attitudes towards artificial intelligence within dermatology: an international online survey. Br J Dermatol. (2020). 10.1111/bjd.18875. [Epub ahead of print].
    1. Shrivastava VK, Londhe ND, Sonawane RS, Suri JS. A novel and robust Bayesian approach for segmentation of psoriasis lesions and its risk stratification. Comp Methods Programs Biomed. (2017) 150:9–22. 10.1016/j.cmpb.2017.07.011
    1. Xie F, Fan H, Li Y, Jiang Z, Meng R, Bovik A. Melanoma classification on dermoscopy images using a neural network ensemble model. IEEE Trans Med Imaging. (2017) 36:849–58. 10.1109/TMI.2016.2633551
    1. Zakhem GA, Fakhoury JW, Motosko CC, Ho RS. Characterizing the role of dermatologists in developing AI for assessment of skin cancer: a systematic review. J Am Acad Dermatol. (2020). 10.1016/j.jaad.2020.01.028. [Epub ahead of print].
    1. Dick V, Sinz C, Mittlbock M, Kittler H, Tschandl P. Accuracy of computer-aided diagnosis of melanoma: a meta-analysis. JAMA Dermatol. (2019) 155:1291–9. 10.1001/jamadermatol.2019.1375
    1. Dreiseitl S, Binder M, Hable K, Kittler H. Computer versus human diagnosis of melanoma: evaluation of the feasibility of an automated diagnostic system in a prospective clinical trial. Melan Res. (2009) 19:180–4. 10.1097/CMR.0b013e32832a1e41
    1. Safran T, Viezel-Mathieu A, Corban J, Kanevsky A, Thibaudeau S, Kanevsky J. Machine learning and melanoma: the future of screening. J Am Acad Dermatol. (2018) 78:620–1. 10.1016/j.jaad.2017.09.055
    1. Thomsen K, Iversen L, Titlestad TL, Winther O. Systematic review of machine learning for diagnosis and prognosis in dermatology. J Dermatol Treat. (2019) 1–15. 10.1080/09546634.2019.1682500
    1. Krittanawong C. The rise of artificial intelligence and the uncertain future for physicians. Eur J Internal Med. (2018) 48:e13–e4. 10.1016/j.ejim.2017.06.017
    1. Lallas A, Argenziano G. Artificial intelligence and melanoma diagnosis: ignoring human nature may lead to false predictions. Dermatol Pract Concept. (2018) 8:249–51. 10.5826/dpc.0804a01
    1. Yu C, Yang S, Kim W, Jung J, Chung KY, Lee SW, et al. . Acral melanoma detection using a convolutional neural network for dermoscopy images. PLoS ONE. (2018) 13:e0193321. 10.1371/journal.pone.0193321
    1. Pour MP, Seker H, Ling S. Automated lesion segmentation and dermoscopic feature segmentation for skin cancer analysis. Conf Proc. (2017) 2017:640–3. 10.1109/EMBC.2017.8036906
    1. Jafari MH, Samavi S, Karimi N, Soroushmehr SM, Ward K, Najarian K. Automatic detection of melanoma using broad extraction of features from digital images. Conf Proc. (2016) 2016:1357–60. 10.1109/EMBC.2016.7590959
    1. Sabouri P, GholamHosseini H, Larsson T, Collins J. A cascade classifier for diagnosis of melanoma in clinical images. Conf Proc. (2014) 2014:6748–51. 10.1109/EMBC.2014.6945177
    1. Abedini M, von Cavallar S, Chakravorty R, Davis M, Garnavi R. A cloud-based infrastructure for feedback-driven training and image recognition. Stud Health Technol Inform. (2015) 216:691–5. 10.3233/978-1-61499-564-7-691
    1. Sabbaghi S, Aldeen M, Garnavi R. A deep bag-of-features model for the classification of melanomas in dermoscopy images. Conf Proc. (2016) 2016:1369–72. 10.1109/EMBC.2016.7590962
    1. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. . Dermatologist-level classification of skin cancer with deep neural networks. Nature. (2017) 542:115–8. 10.1038/nature21056
    1. Bi L, Kim J, Ahn E, Kumar A, Fulham M, Feng D. Dermoscopic image segmentation via multistage fully convolutional networks. IEEE Trans Bio-Med Eng. (2017) 64:2065–74. 10.1109/TBME.2017.2712771
    1. Riaz F, Hassan A, Javed MY, Tavares Coimbra M. Detecting melanoma in dermoscopy images using scale adaptive local binary patterns. Conf Proc. (2014) 2014:6758–61. 10.1109/EMBC.2014.6945179
    1. Garcia Arroyo JL, Garcia Zapirain B. Detection of pigment network in dermoscopy images using supervised machine learning and structural analysis. Comp Biol Med. (2014) 44:144–57. 10.1016/j.compbiomed.2013.11.002
    1. Liu Z, Sun J, Smith L, Smith M, Warr R. Distribution quantification on dermoscopy images for computer-assisted diagnosis of cutaneous melanomas. Med Biol Eng Comp. (2012) 50:503–13. 10.1007/s11517-012-0895-7
    1. Jafari MH, Nasr-Esfahani E, Karimi N, Soroushmehr SMR, Samavi S, Najarian K. Extraction of skin lesions from non-dermoscopic images for surgical excision of melanoma. Int J Comp Assist Radiol Surg. (2017) 12:1021–30. 10.1007/s11548-017-1567-8
    1. Shimizu K, Iyatomi H, Celebi ME, Norton KA, Tanaka M. Four-class classification of skin lesions with task decomposition strategy. IEEE Trans Bio-Med Eng. (2015) 62:274–83. 10.1109/TBME.2014.2348323
    1. Lingala M, Stanley RJ, Rader RK, Hagerty J, Rabinovitz HS, Oliviero M, et al. . Fuzzy logic color detection: blue areas in melanoma dermoscopy images. Comput Med Imaging Graph. (2014) 38:403–10. 10.1016/j.compmedimag.2014.03.007
    1. Nasr-Esfahani E, Samavi S, Karimi N, Soroushmehr SM, Jafari MH, Ward K, et al. . Melanoma detection by analysis of clinical images using convolutional neural network. Conf Proc. (2016) 2016:1373–6. 10.1109/EMBC.2016.7590963
    1. Souza S, Abe JM. Nevus and melanoma paraconsistent classification. Studies Health Technol Inform. (2014) 207:244–50. 10.1007/978-3-319-19722-7_9
    1. Premaladha J, Ravichandran KS. Novel approaches for diagnosing melanoma skin lesions through supervised and deep learning algorithms. J Med Syst. (2016) 40:96. 10.1007/s10916-016-0460-2
    1. Tschandl P, Kittler H, Argenziano G. A pretrained neural network shows similar diagnostic accuracy to medical students in categorizing dermatoscopic images after comparable training conditions. Br J Dermatol. (2017) 177:867–9. 10.1111/bjd.15695
    1. Kaur R, Albano PP, Cole JG, Hagerty J, LeAnder RW, Moss RH, et al. . Real-time supervised detection of pink areas in dermoscopic images of melanoma: importance of color shades, texture and location. Skin Res Technol. (2015) 21:466–73. 10.1111/srt.12216
    1. Marchetti MA, Codella NCF, Dusza SW, Gutman DA, Helba B, Kalloo A, et al. . Results of the 2016 international skin imaging collaboration international symposium on biomedical imaging challenge: comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images. J Am Acad Dermatol. (2018) 78:270–7.e1. 10.1016/j.jaad.2017.08.016
    1. Li Y, Shen L. Skin lesion analysis towards melanoma detection using deep learning network. Sensors. (2018) 18:E556. 10.3390/s18020556
    1. Afifi S, GholamHosseini H, Sinha R. SVM classifier on chip for melanoma detection. Conf Proc. (2017) 2017:270–4. 10.1109/EMBC.2017.8036814
    1. Marchetti MA, Liopyris K, Dusza SW, Codella NCF, Gutman DA, Helba B, et al. . Computer algorithms show potential for improving dermatologists' accuracy to diagnose cutaneous melanoma: results of the international skin imaging collaboration 2017. J Am Acad Dermatol. (2020) 82:622–7. 10.1016/j.jaad.2019.07.016
    1. Han SS, Kim MS, Lim W, Park GH, Park I, Chang SE. Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm. J Invest Dermatol. (2018) 138:1529–38. 10.1016/j.jid.2018.01.028
    1. Spyridonos P, Gaitanis G, Likas A, Bassukas ID. Automatic discrimination of actinic keratoses from clinical photographs. Comput Biol Med. (2017) 88:50–9. 10.1016/j.compbiomed.2017.07.001
    1. Kefel S, Pelin Kefel S, LeAnder RW, Kaur R, Kasmi R, Mishra NK, et al. . Adaptable texture-based segmentation by variance and intensity for automatic detection of semitranslucent and pink blush areas in basal cell carcinoma. Skin Res Technol. (2016) 22:412–22. 10.1111/srt.12281
    1. Cheng B, Joe Stanley R, Stoecker WV, Stricklin SM, Hinton KA, Nguyen TK, et al. . Analysis of clinical and dermoscopic features for basal cell carcinoma neural network classification. Skin Res Technol. (2013) 19:e217–22. 10.1111/j.1600-0846.2012.00630.x
    1. Cheng B, Joe Stanley R, Stoecker WV, Osterwise CT, Stricklin SM, Hinton KA, et al. . Automatic dirt trail analysis in dermoscopy images. Skin Res Technol. (2013) 19:e20–6. 10.1111/j.1600-0846.2011.00602.x
    1. Odeh SM, Baareh AK. A comparison of classification methods as diagnostic system: a case study on skin lesions. Comp Methods Programs Biomed. (2016) 137:311–9. 10.1016/j.cmpb.2016.09.012
    1. Chang WY, Huang A, Yang CY, Lee CH, Chen YC, Wu TY, et al. . Computer-aided diagnosis of skin lesions using conventional digital photography: a reliability and feasibility study. PLoS ONE. (2013) 8:e76212. 10.1371/journal.pone.0076212
    1. Tan E, Lin F, Sheck L, Salmon P, Ng S. A practical decision-tree model to predict complexity of reconstructive surgery after periocular basal cell carcinoma excision. JEADV. (2017) 31:717–23. 10.1111/jdv.14012
    1. Guvenc P, LeAnder RW, Kefel S, Stoecker WV, Rader RK, Hinton KA, et al. . Sector expansion and elliptical modeling of blue-gray ovoids for basal cell carcinoma discrimination in dermoscopy images. Skin Res Technol. (2013) 19:e532–6. 10.1111/srt.12006
    1. Wang L, Pedersen PC, Agu E, Strong DM, Tulu B. Area determination of diabetic foot ulcer images using a cascaded two-stage SVM-based classification. IEEE Trans Bio-Med Eng. (2017) 64:2098–109. 10.1109/TBME.2016.2632522
    1. Mukherjee R, Manohar DD, Das DK, Achar A, Mitra A, Chakraborty C. Automated tissue classification framework for reproducible chronic wound assessment. BioMed Res Int. (2014) 2014:851582. 10.1155/2014/851582
    1. Manohar Dhane D, Maity M, Mungle T, Bar C, Achar A, Kolekar M, et al. . Fuzzy spectral clustering for automated delineation of chronic wound region using digital images. Comp Biol Med. (2017) 89:551–60. 10.1016/j.compbiomed.2017.04.004
    1. de Franciscis S, Fregola S, Gallo A, Argiro G, Barbetta A, Buffone G, et al. . PredyCLU: a prediction system for chronic leg ulcers based on fuzzy logic; part I - exploring the venous side. Int Wound J. (2016) 13:1349–53. 10.1111/iwj.12529
    1. Garcia-Zapirain B, Elmogy M, El-Baz A, Elmaghraby AS. Classification of pressure ulcer tissues with 3D convolutional neural network. Med Biol Eng Comp. (2018) 56:2245–58. 10.1007/s11517-018-1835-y
    1. Alderden J, Pepper GA, Wilson A, Whitney JD, Richardson S, Butcher R, et al. . Predicting pressure injury in critical care patients: a machine-learning model. Am J Crit Care. (2018) 27:461–8. 10.4037/ajcc2018525
    1. Lu J, Kazmierczak E, Manton JH, Sinclair R. Automatic segmentation of scaling in 2-D psoriasis skin images. IEEE Trans Med Imaging. (2013) 32:719–30. 10.1109/TMI.2012.2236349
    1. Shrivastava VK, Londhe ND, Sonawane RS, Suri JS. Computer-aided diagnosis of psoriasis skin images with HOS, texture and color features: a first comparative study of its kind. Comp Methods Programs Biomed. (2016) 126:98–109. 10.1016/j.cmpb.2015.11.013
    1. Emam SDA, Thomsen SF, Greiner R, Gniadecki R. Predicting the long-term outcomes of biologics in psoriasis patients using machine learning. Br J Dermatol. (2019) 10.1111/bjd.18741. [Epub ahead of print].
    1. Min S, Kong HJ, Yoon C, Kim HC, Suh DH. Development and evaluation of an automatic acne lesion detection program using digital image processing. Skin Res Technol. (2013) 19:e423–32. 10.1111/j.1600-0846.2012.00660.x
    1. Daliri MR. Feature selection using binary particle swarm optimization and support vector machines for medical diagnosis. Biomed Tech Biomed Eng. (2012) 57:395–402. 10.1515/bmt-2012-0009
    1. Begic Fazlic L, Avdagic K, Omanovic S. GA-ANFIS expert system prototype for prediction of dermatological diseases. Studies Health Technol Inform. (2015) 210:622–6. 10.3233/978-1-61499-512-8-622
    1. Khan J, Malik AS, Kamel N, Dass SC, Affandi AM. Segmentation of acne lesion using fuzzy C-means technique with intelligent selection of the desired cluster. Conf Proc. (2015) 2015:3077–80. 10.1109/EMBC.2015.7319042
    1. Huang ML, Hung YH, Lee WM, Li RK, Jiang BR. SVM-RFE based feature selection and Taguchi parameters optimization for multiclass SVM classifier. Scient World J. (2014) 2014:795624. 10.1155/2014/795624
    1. Seite S, Khammari A, Benzaquen M, Moyal D, Dreno B. Development and accuracy of an artificial intelligence algorithm for acne grading from smartphone photographs. Exp Dermatol. (2019) 28:1252–7. 10.1111/exd.14022
    1. Burlina P, Billings S, Joshi N, Albayda J. Automated diagnosis of myositis from muscle ultrasound: exploring the use of machine learning and deep learning methods. PLoS ONE. (2017) 12:e0184059. 10.1371/journal.pone.0184059
    1. Forreryd A, Zeller KS, Lindberg T, Johansson H, Lindstedt M. From genome-wide arrays to tailor-made biomarker readout - Progress towards routine analysis of skin sensitizing chemicals with GARD. Toxicol vitro. (2016) 37:178–88. 10.1016/j.tiv.2016.09.013
    1. Johansson H, Rydnert F, Kuhnl J, Schepky A, Borrebaeck C, Lindstedt M. Genomic allergen rapid detection in-house validation–a proof of concept. Toxicol Sci. (2014) 139:362–70. 10.1093/toxsci/kfu046
    1. Strickland J, Zang Q, Paris M, Lehmann DM, Allen D, Choksi N, et al. . Multivariate models for prediction of human skin sensitization hazard. J Appl Toxicol. (2017) 37:347–60. 10.1002/jat.3366
    1. Tsujita-Inoue K, Hirota M, Ashikaga T, Atobe T, Kouzuki H, Aiba S. Skin sensitization risk assessment model using artificial neural network analysis of data from multiple in vitro assays. Toxicol in vitro. (2014) 28:626–39. 10.1016/j.tiv.2014.01.003
    1. Zang Q, Paris M, Lehmann DM, Bell S, Kleinstreuer N, Allen D, et al. . Prediction of skin sensitization potency using machine learning approaches. J Appl Toxicol. (2017) 37:792–805. 10.1002/jat.3424
    1. Wilm A, Kuhnl J, Kirchmair J. Computational approaches for skin sensitization prediction. Crit Rev Toxicol. (2018) 48:738–60. 10.1080/10408444.2018.1528207
    1. Arevalo J, Cruz-Roa A, Arias V, Romero E, Gonzalez FA. An unsupervised feature learning framework for basal cell carcinoma image analysis. Artif Intell Med. (2015) 64:131–45. 10.1016/j.artmed.2015.04.004
    1. Cruz-Roa AA, Arevalo Ovalle JE, Madabhushi A, Gonzalez Osorio FA. A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection. Med Image Comp Comp Assist Interv. (2013) 16(Pt 2):403–10. 10.1007/978-3-642-40763-5_50
    1. Masood A, Al-Jumaily A. Differential evolution based advised SVM for histopathalogical image analysis for skin cancer detection. Conf Proc. (2015) 2015:781–4. 10.1109/EMBC.2015.7318478
    1. Zhang G, Yin J, Li Z, Su X, Li G, Zhang H. Automated skin biopsy histopathological image annotation using multi-instance representation and learning. BMC Med Genomics. (2013) 6 (Suppl. 3):S10. 10.1186/1755-8794-6-S3-S10
    1. Zhang G, Yin J, Su X, Huang Y, Lao Y, Liang Z, et al. . Augmenting multi-instance multilabel learning with sparse bayesian models for skin biopsy image analysis. BioMed Res Int. (2014) 2014:305629. 10.1155/2014/305629
    1. Olsen TG, Jackson BH, Feeser TA, Kent MN, Moad JC, Krishnamurthy S, et al. . Diagnostic performance of deep learning algorithms applied to three common diagnoses in dermatopathology. J Pathol Inform. (2018) 9:32. 10.4103/jpi.jpi_31_18
    1. Ghosh D, Ding L, Sivaprasad U, Geh E, Biagini Myers J, Bernstein JA, et al. . Multiple transcriptome data analysis reveals biologically relevant atopic dermatitis signature genes and pathways. PLoS ONE. (2015) 10:e0144316. 10.1371/journal.pone.0144316
    1. Mays AC, Chou J, Craddock AL, Miller L, Browne JD. Gene variability between perineural-positive and perineural-negative squamous cell skin cancers. Antican Res. (2016) 36:4007–11. 10.4172/2472-128X.1000133
    1. Son YA, Yucebas SC. A novel SVM-ID3 hybrid feature selection method to build a disease model for melanoma using integrated genotyping and phenotype data from dbGaP. Studies Health Technol Inform. (2014) 205:501–5. 10.3233/978-1-61499-432-9-501
    1. Wei D. A multigene support vector machine predictor for metastasis of cutaneous melanoma. Mol Med Rep. (2018) 17:2907–14. 10.3892/mmr.2017.8219
    1. Yang S, Xu J, Zeng X. A six-long non-coding RNA signature predicts prognosis in melanoma patients. Int J Oncol. (2018) 52:1178–88. 10.3892/ijo.2018.4268
    1. Reimann E, Lattekivi F, Keermann M, Abram K, Koks S, Kingo K, et al. . Multicomponent biomarker approach improves the accuracy of diagnostic biomarkers for psoriasis vulgaris. Acta Derm Venereol. (2019) 99:1258–65. 10.2340/00015555-3337
    1. Lefrancois P, Tetzlaff MT, Moreau L, Watters AK, Netchiporouk E, Provost N, et al. . TruSeq-based gene expression analysis of formalin-fixed paraffin-embedded (FFPE) cutaneous T-cell lymphoma samples: subgroup analysis results and elucidation of biases from FFPE sample processing on the TruSeq Platform. Front Med. (2017) 4:153. 10.3389/fmed.2017.00153
    1. Lefrançois P, Xie P, Wang L, Tetzlaff MT, Moreau L, Watters AK, et al. . Gene expression profiling and immune cell-type deconvolution highlight robust disease progression and survival markers in multiple cohorts of CTCL patients. OncoImmunology. (2018) 7:e1467856. 10.1080/2162402X.2018.1467856
    1. Litvinov IV, Cordeiro B, Huang Y, Zargham H, Pehr K, Dore MA, et al. . Ectopic expression of cancer-testis antigens in cutaneous T-cell lymphoma patients. Clin Cancer Res. (2014) 20:3799–808. 10.1158/1078-0432.CCR-14-0307
    1. Litvinov IV, Netchiporouk E, Cordeiro B, Dore MA, Moreau L, Pehr K, et al. . The use of transcriptional profiling to improve personalized diagnosis and management of cutaneous T-cell lymphoma (CTCL). Clin Cancer Res. (2015) 21:2820–9. 10.1158/1078-0432.CCR-14-3322
    1. Litvinov IV, Tetzlaff MT, Thibault P, Gangar P, Moreau L, Watters AK, et al. . Gene expression analysis in Cutaneous T-Cell Lymphomas (CTCL) highlights disease heterogeneity and potential diagnostic and prognostic indicators. Oncoimmunology. (2017) 6:e1306618. 10.1080/2162402X.2017.1306618
    1. Patrick MT, Stuart PE, Raja K, Gudjonsson JE, Tejasvi T, Yang J, et al. . Genetic signature to provide robust risk assessment of psoriatic arthritis development in psoriasis patients. Nat Commun. (2018) 9:4178. 10.1038/s41467-018-06672-6
    1. Beam AL, Kohane IS. Big data and machine learning in health care. JAMA. (2018) 319:1317–8. 10.1001/jama.2017.18391
    1. Christodoulou E, Ma J, Collins GS, Steyerberg EW, Verbakel JY, Van Calster B. A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. J Clin Epidemiol. (2019) 110:12–22. 10.1016/j.jclinepi.2019.02.004
    1. Du-Harpur X, Watt FM, Luscombe NM, Lynch MD. What is AI? Applications of artificial intelligence to dermatology. Br J Dermatol. (2020) 10.1111/bjd.18880. [Epub ahead of print].
    1. Navarrete-Dechent C, Dusza SW, Liopyris K, Marghoob AA, Halpern AC, Marchetti MA. Automated dermatological diagnosis: hype or reality? J Invest Dermatol. (2018) 138:2277–9. 10.1016/j.jid.2018.04.040
    1. Winkler JK, Fink C, Toberer F, Enk A, Deinlein T, Hofmann-Wellenhof R, et al. . Association between surgical skin markings in dermoscopic images and diagnostic performance of a deep learning convolutional neural network for melanoma recognition. JAMA Dermatol. (2019) 155:1135–41. 10.1001/jamadermatol.2019.1735
    1. Narla A, Kuprel B, Sarin K, Novoa R, Ko J. Automated classification of skin lesions: from pixels to practice. J Invest Dermatol. (2018) 138:2108–10. 10.1016/j.jid.2018.06.175
    1. Park AJ, Ko JM, Swerlick RA. Crowdsourcing dermatology: dataderm, big data analytics, and machine learning technology. J Am Acad Dermatol. (2018) 78:643–4. 10.1016/j.jaad.2017.08.053
    1. Wang F, Kaushal R, Khullar D. Should health care demand interpretable artificial intelligence or accept black box medicine? Ann Internal Med. (2019). 10.7326/M19-2548. [Epub ahead of print].
    1. Lim BCW, Flaherty G. Artificial intelligence in dermatology: are we there yet? Br J Dermatol. (2019) 181:190–1. 10.1111/bjd.17899
    1. Mattessich S, Tassavor M, Swetter SM, Grant-Kels JM. How I learned to stop worrying and love machine learning. Clin Dermatol. (2018) 36:777–8. 10.1016/j.clindermatol.2018.06.003

Source: PubMed

3
Prenumerera