Mild Cognitive Impairment

Ronald C Petersen, Ronald C Petersen

Abstract

Purpose of review: As individuals age, the quality of cognitive function becomes an increasingly important topic. The concept of mild cognitive impairment (MCI) has evolved over the past 2 decades to represent a state of cognitive function between that seen in normal aging and dementia. As such, it is important for health care providers to be aware of the condition and place it in the appropriate clinical context.

Recent findings: Numerous international population-based studies have been conducted to document the frequency of MCI, estimating its prevalence to be between 15% and 20% in persons 60 years and older, making it a common condition encountered by clinicians. The annual rate in which MCI progresses to dementia varies between 8% and 15% per year, implying that it is an important condition to identify and treat. In those MCI cases destined to develop Alzheimer disease, biomarkers are emerging to help identify etiology and predict progression. However, not all MCI is due to Alzheimer disease, and identifying subtypes is important for possible treatment and counseling. If treatable causes are identified, the person with MCI might improve.

Summary: MCI is an important clinical entity to identify, and while uncertainties persist, clinicians need to be aware of its diagnostic features to enable them to counsel patients. MCI remains an active area of research as numerous randomized controlled trials are being conducted to develop effective treatments.

Figures

Figure 2-1
Figure 2-1
Key Symposium criteria. First Key Symposium criteria demonstrating the syndromic phenotypes and how they can be paired with possible etiologies to assist the clinician in making a diagnosis. AD = Alzheimer disease; DLB = dementia with Lewy bodies; FTD = frontotemporal dementia; MCI = mild cognitive impairment; VCI = vascular cognitive impairment. Modified with permission from Petersen RC, Continuum (Minneap Minn).8 journals.lww.com/continuum/Fulltext/2004/02000/MILD_COGNITIVE_IMPAIRMENT.3.aspx. © 2004, American Academy of Neurology.
Figure 2-3
Figure 2-3
Comparison of common criteria used to characterize mild cognitive impairment (MCI) in various publications. The biomarkers for amyloid-β (Aβ) or tau could be derived from either positron emission tomography (PET) imaging or CSF to accompany the clinical syndromes described above. AD = Alzheimer disease; CSF = cerebrospinal fluid; DSM-5 = Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition; FDG-PET = fluorodeoxyglucose positron emission tomography; MRI = magnetic resonance imaging.Reprinted with permission from Petersen RC, et al, J Intern Med.4 onlinelibrary.wiley.com/doi/10.1111/j.1365-2796.2004.01388.x/full#b36. © 2014 The Association for the Publication of the Journal of Internal Medicine.
Figure 2-2
Figure 2-2
Temporal evolution of criteria for mild cognitive impairment (MCI) and prodromal Alzheimer disease (AD). DSM-5 = Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition; NIA-AA = National Institute on Aging–Alzheimer’s Association.
Figure 2-4
Figure 2-4
Progression of imaging features from cognitively normal to mild cognitive impairment to dementia. FDG-PET = fluorodeoxyglucose positron emission tomography; MRI = magnetic resonance imaging; PET = positron emission tomography.

References

    1. Jack CR, Jr, Albert MS, Knopman DS, et al. Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & dementia: the journal of the Alzheimer’s Association 2011; 7(3): 257– 262. doi:10.1016/j.jalz.2011.03.004.
    1. Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med 2004; 256(3): 183– 194. doi:10.1111/j.1365-2796.2004.01388.x.
    1. Petersen RC. Clinical practice. Mild cognitive impairment. N Engl J Med 2011; 364(23): 2227– 2234. doi:10.1056/NEJMcp0910237.
    1. Petersen RC, Caracciolo B, Brayne C, et al. Mild cognitive impairment: a concept in evolution. J Intern Med 2014; 275(3): 214– 228. doi:10.1111/joim.12190.
    1. Reisberg B, Ferris S, de Leon MJ. Stage-specific behavioral, cognitive, and in vivo changes in community residing subjects with age-associated memory impairment and primary degenerative dementia of the Alzheimer type. Drug Dev Res 1988; 15(2–3): 101– 114. doi:10.1002/ddr.430150203.
    1. Petersen RC, Smith GE, Waring SC, et al. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 1999; 56(3): 303– 308. doi:10.1001/archneur.56.3.303.
    1. Winblad B, Palmer K, Kivipelto M, et al. Mild cognitive impairment—beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med 2004; 256(3): 240– 246. doi:10.1111/j.1365-2796.2004.01380.x.
    1. Petersen RC.Mild Cognitive Impairment. Continuum (Minneap Minn) 2004; 10(1 Dementia): 9– 28. doi:10.1212/.
    1. Albert MS, DeKosky ST, Dickson D, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011; 7(3): 270– 279. doi:10.1016/j.jalz.2011.03.008.
    1. Doody RS, Ferris SH, Salloway S, et al. Donepezil treatment of patients with MCI: a 48-week randomized, placebo-controlled trial. Neurology 2009; 72(18): 1555– 1561. doi:10.1212/01.wnl.0000344650.95823.03.
    1. Feldman HH, Ferris S, Winblad B, et al. Effect of rivastigmine on delay to diagnosis of Alzheimer’s disease from mild cognitive impairment: the InDDEx study. Lancet Neurol 2007; 6(6): 501– 512. doi:10.1016/S1474-4422(07)70109-6.
    1. Thal LJ, Ferris SH, Kirby L, et al. A randomized, double-blind, study of rofecoxib in patients with mild cognitive impairment. Neuropsychopharmacology 2005; 30(6): 1204– 1215. doi:10.1038/sj.npp.1300690.
    1. Winblad B, Gauthier S, Scinto L, et al. Safety and efficacy of galantamine in subjects with mild cognitive impairment. Neurology 2008; 70(22): 2024– 2035. doi:10.1212/01.wnl.0000303815.69777.26.
    1. Petersen RC, Thomas RG, Grundman M, et al. Vitamin E and donepezil for the treatment of mild cognitive impairment. N Engl J Med 2005; 352(23): 2379– 2388. doi:10.1056/NEJMoa050151.
    1. McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011; 7(3): 263– 269. doi:10.1016/j.jalz.2011.03.005.
    1. Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Assocation workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011; 7(3): 280– 292. doi:10.1016/j.jalz.2011.03.003.
    1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders, fifth edition Washington, DC: American Psychiatric Publishing, 2013.
    1. Dubois B, Feldman HH, Jacova C, et al. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 2007; 6(8): 734– 746. doi:10.1016/S1474-4422(07)70178-3.
    1. Dubois B, Feldman HH, Jacova C, et al. Revising the definition of Alzheimer’s disease: a new lexicon. Lancet Neurol 2010; 9(11): 1118– 1127. doi:10.1016/S1474-4422(10)70223-4.
    1. Dubois B, Feldman HH, Jacova C, et al. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol 2014; 13(6): 614– 629. doi:10.1016/S1474-4422(14)70090-0.
    1. Busse A, Hensel A, Gühne U, et al. Mild cognitive impairment: long-term course of four clinical subtypes. Neurology 2006; 67(12): 2176– 2185. doi:10.1212/01.wnl.0000249117.23318.e1.
    1. Di Carlo A, Lamassa M, Baldereschi M, et al. CIND and MCI in the Italian elderly: frequency, vascular risk factors, progression to dementia. Neurology 2007; 68(22): 1909– 1916. doi:10.1212/01.wnl.0000263132.99055.0d.
    1. Ganguli M, Chang CC, Snitz BE, et al. Prevalence of mild cognitive impairment by multiple classifications: The Monongahela-Youghiogheny Healthy Aging Team (MYHAT) project. Am J Geriatr Psychiatry 2010; 18(8): 674– 683. doi:10.1097/JGP.ob013e3181cdee4f.
    1. Larrieu S, Letenneur L, Orgogozo JM, et al. Incidence and outcome of mild cognitive impairment in a population-based prospective cohort. Neurology 2002; 59(10): 1594– 1599. doi:10.1212/01.WNL.0000034176.07159.F8.
    1. Lopez OL, Jagust WJ, DeKosky ST, et al. Prevalence and classification of mild cognitive impairment in the Cardiovascular Health Study Cognition Study: part 1. Arch Neurol 2003; 60(10): 1385– 1389. doi:10.1001/archneur.60.10.1385.
    1. Manly JJ, Tang MX, Schupf N, et al. Frequency and course of mild cognitive impairment in a multiethnic community. Ann Neurol 2008; 63(4): 494– 506. doi:10.1002/ana.21326.
    1. Petersen RC, Roberts RO, Knopman DS, et al. Prevalence of mild cognitive impairment is higher in men. The Mayo Clinic Study of Aging. Neurology 2010; 75(10): 889– 897. doi:10.1212/WNL.0b013e3181f11d85.
    1. Roberts RO, Geda YE, Knopman DS, et al. The incidence of MCI differs by subtype and is higher in men: the Mayo Clinic Study of Aging. Neurology 2012; 78(5): 342– 351. doi:10.1212/WNL.0b013e3182452862.
    1. Unverzagt FW, Gao S, Baiyewu O, et al. Prevalence of cognitive impairment: data from the Indianapolis Study of Health and Aging. Neurology 2001; 57(9): 1655– 1662. doi:10.1212/WNL.57.9.1655.
    1. Okello A, Koivunen J, Edison P, et al. Conversion of amyloid positive and negative MCI to AD over 3 years: An 11C-PIB PET Study. Neurology 2009; 73(10): 754– 760. doi:10.1212/WNL.ob013e3181b23564.
    1. Lopez OL, Becker JT, Chang YF, et al. Incidence of mild cognitive impairment in the Pittsburgh Cardiovascular Health Study-Cognition Study. Neurology 2012; 79(15): 1599– 1606. doi:10.1212/WNL.0b013e31826e25f0.
    1. Nasreddine ZS, Phillips NA, Bédirian V, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 2005; 53(4): 695– 699. doi:10.1111/j.1532-5415.2005.53221.x.
    1. Kokmen E, Naessens JM, Offord KP. A short test of mental status: description and preliminary results. Mayo Clin Proc 1987; 62(4): 281– 288. doi:10.1016/S0025-6196(12)61905-3.
    1. Weiner MW, Veitch DP, Aisen PS, et al. ; Alzheimer’s Disease Neuroimaging Initiative. Impact of the Alzheimer’s Disease Neuroimaging Initiative, 2004 to 2014. Alzheimers Dement 2015; 11(7): 865– 884. doi:10.1016/j.jalz.2015.04.005.
    1. Dickerson BC, Salat DH, Greve DN, et al. Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology 2005; 65(3): 404– 411. doi:10.1212/01.wnl.0000171450.97464.49.
    1. Landau SM, Harvey D, Madison CM, et al. Comparing predictors of conversion and decline in mild cognitive impairment. Neurology 2010; 75(3): 230– 238. doi:10.1212/WNL.0b013e3181e8e8b8.
    1. Landau SM, Mintun MA, Joshi AD, et al. Amyloid deposition, hypometabolism, and longitudinal cognitive decline. Ann Neurol 2012; 72(4): 578– 586. doi:10.1002/ana.23650.
    1. Prestia A, Caroli A, van der Flier WM, et al. Prediction of dementia in MCI patients based on core diagnostic markers for Alzheimer disease. Neurology 2013; 80(11): 1048– 1056. doi:10.1212/WNL.0b013e3182872830.
    1. Petersen RC, Aisen P, Boeve BF, et al. Mild cognitive impairment due to Alzheimer disease in the community. Ann Neurol 2013; 74(2): 199– 208. doi:10.1002/ana.23931.
    1. Petersen RC, Smith GE, Ivnik RJ, et al. Apolipoprotein E status as a predictor of the development of Alzheimer’s disease in memory-impaired individuals. JAMA 1995; 273(16): 1274– 1278. doi:10.1001/jama.1995.03520400044042.
    1. Johnson KA, Schultz A, Betensky RA, et al. Tau positron emission tomographic imaging in aging and early Alzheimer disease. Ann Neurol 2016; 79(1): 110– 119. doi:10.1002/ana.24546.
    1. Mattsson N, Insel PS, Donohue M, et al. ; Alzheimer’s Disease Neuroimaging Initiative. Predicting reduction of cerebrospinal fluid β-amyloid 42 in cognitively healthy controls. JAMA Neurol 2015; 72(5): 554– 560. doi:10.1001/jamaneurol.2014.4530.
    1. Mattsson N, Zetterberg H, Hansson O, et al. CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA 2009; 302(4): 385– 393. doi:10.1001/jama.2009.1064.
    1. Hansson O, Zetterberg H, Buchhave P, et al. Association between CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol 2006; 5(3): 228– 234. doi:10.1016/S1474-4422(06)70355-6.
    1. Rowe CC, Ng S, Ackermann U, et al. Imaging beta-amyloid burden in aging and dementia. Neurology 2007; 68(20): 1718– 1725. doi:10.1212/01.wnl.0000261919.22630.ea.
    1. Perry D, Sperling R, Katz R, et al. Building a roadmap for developing combination therapies for Alzheimer’s disease. Expert Rev Neurother 2015; 15(3): 327– 333. doi:10.1586/14737175.2015.996551.
    1. Romero K, Ito K, Rogers JA, et al. ; Alzheimer’s Disease Neuroimaging Initiative; Coalition Against Major Diseases. The future is now: model-based clinical trial design for Alzheimer’s disease. Clin Pharmacol Ther 2015; 97(3): 210– 214. doi:10.1002/cpt.16.
    1. Lautenschlager NT, Cox KL, Flicker L, et al. Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial. JAMA 2008; 300(9): 1027– 1037. doi:10.1001/jama.300.9.1027.
    1. National Institute of Health Office of the Director. NIH state-of-the-science conference statement on preventing Alzhimer’s disease and cognitive decline. Volume 27, number 4 Updated April 26–28, 2010. Accessed February 9, 2016.
    1. Petersen RC, Stevens JC, Ganguli M, et al. Practice parameter: early detection of dementia: mild cognitive impairment (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 2001; 56(9): 1133– 1142. doi:10.1212/WNL.56.9.1133.
    1. Roberts JS, Karlawish JH, Uhlmann WR, et al. Mild cognitive impairment in clinical care: a survey of American Academy of Neurology members. Neurology 2010; 75(5): 425– 431. doi:10.1212/WNL.0b013e3181eb5872.
    1. Institute of Medicine. Cognitive aging: progress in understanding and opportunities for action. Washington, DC: The National Academies Press, 2015.

Source: PubMed

3
Prenumerera