Oxygen targets and 6-month outcome after out of hospital cardiac arrest: a pre-planned sub-analysis of the targeted hypothermia versus targeted normothermia after Out-of-Hospital Cardiac Arrest (TTM2) trial

Chiara Robba, Rafael Badenes, Denise Battaglini, Lorenzo Ball, Filippo Sanfilippo, Iole Brunetti, Janus Christian Jakobsen, Gisela Lilja, Hans Friberg, Pedro David Wendel-Garcia, Paul J Young, Glenn Eastwood, Michelle S Chew, Johan Unden, Matthew Thomas, Michael Joannidis, Alistair Nichol, Andreas Lundin, Jacob Hollenberg, Naomi Hammond, Manoj Saxena, Annborn Martin, Miroslav Solar, Fabio Silvio Taccone, Josef Dankiewicz, Niklas Nielsen, Anders Morten Grejs, Florian Ebner, Paolo Pelosi, TTM2 Trial collaborators

Abstract

Background: Optimal oxygen targets in patients resuscitated after cardiac arrest are uncertain. The primary aim of this study was to describe the values of partial pressure of oxygen values (PaO2) and the episodes of hypoxemia and hyperoxemia occurring within the first 72 h of mechanical ventilation in out of hospital cardiac arrest (OHCA) patients. The secondary aim was to evaluate the association of PaO2 with patients' outcome.

Methods: Preplanned secondary analysis of the targeted hypothermia versus targeted normothermia after OHCA (TTM2) trial. Arterial blood gases values were collected from randomization every 4 h for the first 32 h, and then, every 8 h until day 3. Hypoxemia was defined as PaO2 < 60 mmHg and severe hyperoxemia as PaO2 > 300 mmHg. Mortality and poor neurological outcome (defined according to modified Rankin scale) were collected at 6 months.

Results: 1418 patients were included in the analysis. The mean age was 64 ± 14 years, and 292 patients (20.6%) were female. 24.9% of patients had at least one episode of hypoxemia, and 7.6% of patients had at least one episode of severe hyperoxemia. Both hypoxemia and hyperoxemia were independently associated with 6-month mortality, but not with poor neurological outcome. The best cutoff point associated with 6-month mortality for hypoxemia was 69 mmHg (Risk Ratio, RR = 1.009, 95% CI 0.93-1.09), and for hyperoxemia was 195 mmHg (RR = 1.006, 95% CI 0.95-1.06). The time exposure, i.e., the area under the curve (PaO2-AUC), for hyperoxemia was significantly associated with mortality (p = 0.003).

Conclusions: In OHCA patients, both hypoxemia and hyperoxemia are associated with 6-months mortality, with an effect mediated by the timing exposure to high values of oxygen. Precise titration of oxygen levels should be considered in this group of patients.

Trial registration: clinicaltrials.gov NCT02908308 , Registered September 20, 2016.

Keywords: Cardiac arrest; Hyperoxemia; Hypoxemia; Mortality; Neurological outcome.

Conflict of interest statement

Dr. Saxena is receiving consulting fees from Bard Medical; Dr. Young is receiving lecture fees from Bard Medical; Dr. Taccone is receiving grant support from Bard Medical and ZOLL Medical; Dr. Nichol is receiving grant support, paid to University College Dublin, from AM Pharma and grant sup-port, paid to Monash University, from Baxter Healthcare; Dr. Chew is receiving lecture fees from Edwards Lifesciences; Dr. Friberg is receiving fees for academic advising from TEQCool; and Dr. Nielsen is receiving lecture fees from Bard Medical and consulting fees from BrainCool. Dr Badenes is supported by INCLIVA. Dr Robba received fees for lectures from Masimo, and GE. Dr. Battaglini received fees for lectures from Baxter. No other potential conflict of interest relevant to this article was reported.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Frequency distribution of arterial partial pressure of oxygen (PaO2) classes (conventional thresholds). Number of hypoxemia (PaO2 < 60 mmHg) or severe hyperoxemia (PaO2 > 300 mmHg) episodes per patient during the first 72 h after intensive care unit admission. This figure was based on all patients included in the cohort, with a percent distribution as follow: Episodes of Hypoxemia = 0 (n = 1372 (75.01%), 1 (n = 304 (16.62%), 2 (n = 88 (4.81%), 3 (n = 39 (2.13%), 4 + (n = 26 (1.42%). Episodes of Hyperoxemia = 0 (n = 1689 (92.35%), 1 (n = 130 (7.11%), 2 (n = 9 (0.49%), 4 (n = 1 (0.05%)
Fig. 2
Fig. 2
Adjusted hourly trajectories of partial pressure of oxygen according to 6-month survival status. Left panel shows the predicted partial pressure of oxygen (PaO2) trajectories according to survival status. Right panel shows the PaO2 differences between survivors and non-survivors at each time point. For this analysis, mixed regression model included a random intercept on patients ID and a random coefficient on the time variable (time elapsed between measurements). These predicted trajectories were adjusted for TTM2 randomization arms, age (year), gender, Charlson comorbidity index, state of shock at admission, return to spontaneous circulation-ROSC- time, initial cardiac rhythm (shockable vs non-shockable), witnesses of cardiac arrest, respiratory rate (breath/min), plateau pressure (cmH2O),positive end expiratory pressure (cmH2O), arterial partial pressure of carbon dioxide, PaCO2 (mmHg), pH, Base excess (mEq/L), and fraction of inspired O2 (%). Right panel confirmed that the differences between these two trajectories (survivors/non-survivors) are statistically significant up to the first 32 h of measurement (omnibus p value = 0.0074). ICU, Intensive Care Unit
Fig. 3
Fig. 3
Arterial partial pressure of oxygen (PaO2) mortality risk profile. In this Cox regression, PaO2 was modeled with a fractional polynomial (FP) of second degree FP [0–1], and included the following covariates: TTM2 randomization group, tympanic temperature at admission, age (years), gender, Charlson comorbidity index, cardiac arrest witnessed, time to return to spontaneous circulation, ROSC (min), bystander performed cardiopulmonary resuscitation, CPR, shockable rhythm, cardiac arrest location (home, public place, other), shock diagnosis on admission, ST-Elevated myocardial infarction (STEMI) diagnosis on admission, respiratory rate (breath/min), positive end-expiratory pressure, arterial partial pressure of carbon dioxide (PaCO2) (mmHg), pHa, and Base excess (mEq/L), Driving pressure (cmH20), and mechanical power (J/min). Along the PaO2 continuum, values before and after its median (108.7 mmHg and used as reference—see vertical line in red) were statistically associated with mortality if the 95% confidence interval (CI) did not cover the y-line of 1 (horizontal line in red)
Fig. 4
Fig. 4
Relative distribution analysis for the definition of the best cut-off of arterial partial pressure of oxygen (PaO2) associated with mortality. Best cutoff point along the continuum of the marker that separated survivors versus non-survivors at the end of the follow-up. In this analysis, the quantile (or proportion) distribution of the marker survivors (plotted on the x-axis plus the corresponding marker values at the top) is plotted against the proportion ratio of the marker distribution for non-survivors
Fig. 5
Fig. 5
Frequency distribution of arterial partial pressure of oxygen (PaO2) classes (according to best threshold). Numbers of hypoxemia/hyperoxemia episodes per patient during the first 72 of mechanical ventilation. This figure was based on all patients included in the cohort, with a percent distribution as follow: Episodes of Hypoxemia = 0 (n = 805 (44.01%), 1 (n = 439 (24.00%), 2 (n = 239 (13.07%), 3 (n = 142 (7.76%), 4 + (n = 204 (11.05%). Episodes of Hyperoxemia = 0 (n = 1431 (76.90%), 1 (n = 339 (18.53%), 2 (n = 43 (2.35%), 3 (n = 10 (0.55%), 4 + (n = 6 (0.33%)

References

    1. Sasson C, Rogers MAM, Dahl J, Kellermann AL. Predictors of survival from out-of-hospital cardiac arrest. Circ Cardiovasc Qual Outcomes. 2010;3:63–81.
    1. Zandbergen EGJ, de Haan RJ, Reitsma JB, Hijdra A. Survival and recovery of consciousness in anoxic-ischemic coma after cardiopulmonary resuscitation. Intensive Care Med. 2003;29:1911–1915.
    1. Eastwood GM, Tanaka A, Espinoza EDV, Peck L, Young H, Mårtensson J, et al. Conservative oxygen therapy in mechanically ventilated patients following cardiac arrest: a retrospective nested cohort study. Resuscitation. 2016;101:108–114.
    1. Newell C, Grier S, Soar J. Airway and ventilation management during cardiopulmonary resuscitation and after successful resuscitation. Crit Care. 2018;22:190.
    1. Nolan JP, Neumar RW, Adrie C, Aibiki M, Berg RA, Böttiger BW, et al. Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. Resuscitation. 2008;79:350–379.
    1. Sekhon MS, Ainslie PN, Griesdale DE. Clinical pathophysiology of hypoxic ischemic brain injury after cardiac arrest: a “two-hit” model. Crit Care. 2017;21:90.
    1. Ebner F, Ullén S, Åneman A, Cronberg T, Mattsson N, Friberg H, et al. Associations between partial pressure of oxygen and neurological outcome in out-of-hospital cardiac arrest patients: an explorative analysis of a randomized trial. Crit Care. 2019;23:30.
    1. Bellomo R, Bailey M, Eastwood GM, Nichol A, Pilcher D, Hart GK, et al. Arterial hyperoxia and in-hospital mortality after resuscitation from cardiac arrest. Crit Care. 2011;15:R90.
    1. Wang C-H, Chang W-T, Huang C-H, Tsai M-S, Yu P-H, Wang A-Y, et al. The effect of hyperoxia on survival following adult cardiac arrest: a systematic review and meta-analysis of observational studies. Resuscitation. 2014;85:1142–1148.
    1. Vincent J-L, Taccone FS, He X. Harmful effects of hyperoxia in postcardiac arrest, sepsis, traumatic brain injury, or stroke: the importance of individualized oxygen therapy in critically ill patients. Can Respir J. 2017;2017:1–7.
    1. Brueckl C, Kaestle S, Kerem A, Habazettl H, Krombach F, Kuppe H, et al. Hyperoxia-induced reactive oxygen species formation in pulmonary capillary endothelial cells in situ. Am J Respir Cell Mol Biol. 2006;34:453–463.
    1. Brugniaux JV, Coombs GB, Barak OF, Dujic Z, Sekhon MS, Ainslie PN. Highs and lows of hyperoxia: physiological, performance, and clinical aspects. Am J Physiol Integr Comp Physiol. 2018;315:R1–27.
    1. Farquhar H, Weatherall M, Wijesinghe M, Perrin K, Ranchord A, Simmonds M, et al. Systematic review of studies of the effect of hyperoxia on coronary blood flow. Am Heart J. 2009;158:371–377.
    1. Cornet AD, Kooter AJ, Peters MJ, Smulders YM. The potential harm of oxygen therapy in medical emergencies. Crit Care. 2013;17:313.
    1. Damiani E, Donati A, Girardis M. Oxygen in the critically ill. Curr Opin Anaesthesiol. 2018;31:129–135.
    1. Crawford P, Good PA, Gutierrez E, Feinberg JH, Boehmer JP, Silber DH, et al. Effects of supplemental oxygen on forearm vasodilation in humans. J Appl Physiol. 1997;82:1601–1606.
    1. Robba C, Siwicka-Gieroba D, Sikter A, Battaglini D, Dąbrowski W, Schultz MJ, et al. Pathophysiology and clinical consequences of arterial blood gases and pH after cardiac arrest. Intensive Care Med Exp. 2020;8:19.
    1. Kilgannon JH. Association between arterial hyperoxia following resuscitation from cardiac arrest and in-hospital mortality. JAMA. 2010;303:2165.
    1. Janz DR, Hollenbeck RD, Pollock JS, McPherson JA, Rice TW. Hyperoxia is associated with increased mortality in patients treated with mild therapeutic hypothermia after sudden cardiac arrest*. Crit Care Med. 2012;40:3135–3139.
    1. Ihle JF, Bernard S, Bailey MJ, Pilcher DV, Smith K, Scheinkestel CD. Hyperoxia in the intensive care unit and outcome after out-of-hospital ventricular fibrillation cardiac arrest. Crit Care Resusc. 2013;15:186–190.
    1. Elmer J, Scutella M, Pullalarevu R, Wang B, Vaghasia N, Trzeciak S, et al. The association between hyperoxia and patient outcomes after cardiac arrest: analysis of a high-resolution database. Intensive Care Med. 2015;41:49–57.
    1. Robba C, Nielsen N, Dankiewicz J, Badenes R, Battaglini D, Ball L, et al. Ventilation management and outcomes in out-of-hospital cardiac arrest: a protocol for a preplanned secondary analysis of the TTM2 trial. BMJ Open. 2022;12:e058001.
    1. Dankiewicz J, Cronberg T, Lilja G, Jakobsen JC, Levin H, Ullén S, et al. Hypothermia versus normothermia after out-of-hospital cardiac arrest. N Engl J Med. 2021;384:2283–2294.
    1. von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet. 2007;370:1453–1457.
    1. Roberts BW, Kilgannon JH, Hunter BR, Puskarich MA, Pierce L, Donnino M, et al. Association between early hyperoxia exposure after resuscitation from cardiac arrest and neurological disability. Circulation. 2018;137:2114–2124.
    1. Charlson M, Szatrowski TP, Peterson J, Gold J. Validation of a combined comorbidity index. J Clin Epidemiol. 1994;47:1245–1251.
    1. Robba C, Badenes R, Battaglini D, Ball L, Brunetti I, Jakobsen JC, et al. Ventilatory settings in the initial 72 h and their association with outcome in out-of-hospital cardiac arrest patients: a preplanned secondary analysis of the targeted hypothermia versus targeted normothermia after out-of-hospital cardiac arrest (TTM2) tr. Intensive Care Med. 2022;48:1024–1038.
    1. Taran S, Pelosi P, Robba C. Optimizing oxygen delivery to the injured brain. Curr Opin Crit Care. 2022;28:145–156.
    1. Singhal AB, Dijkhuizen RM, Rosen BR, Lo EH. Normobaric hyperoxia reduces MRI diffusion abnormalities and infarct size in experimental stroke. Neurology. 2002;58:945–952.
    1. Nelskylä A, Parr MJ, Skrifvars MB. Prevalence and factors correlating with hyperoxia exposure following cardiac arrest—an observational single centre study. Scand J Trauma Resusc Emerg Med. 2013;21:35.
    1. Shin HK, Dunn AK, Jones PB, Boas DA, Lo EH, Moskowitz MA, et al. Normobaric hyperoxia improves cerebral blood flow and oxygenation, and inhibits peri-infarct depolarizations in experimental focal ischaemia. Brain. 2007;130:1631–1642.
    1. Alternative Therapy Evaluation Committee for the Insurance Corporation of Brithish Columbia A review of the scientific evidence on the treatment of traumatic brain injuries and strokes with hyperbaric oxygen. Brain Inj. 2003;17:225–236.
    1. Rincon F, Mayer SA, Rivolta J, Stillman J, Boden-Albala B, Elkind MSV, et al. Impact of delayed transfer of critically ill stroke patients from the emergency department to the neuro-ICU. Neurocrit Care. 2010;13:75–81.
    1. Le Gall JR. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA J Am Med Assoc. 1993;270:2957–2963.
    1. Wang HE, Prince DK, Drennan IR, Grunau B, Carlbom DJ, Johnson N, et al. Post-resuscitation arterial oxygen and carbon dioxide and outcomes after out-of-hospital cardiac arrest. Resuscitation. 2017;120:113–118.
    1. Spindelboeck W, Gemes G, Strasser C, Toescher K, Kores B, Metnitz P, et al. Arterial blood gases during and their dynamic changes after cardiopulmonary resuscitation: a prospective clinical study. Resuscitation. 2016;106:24–29.
    1. Nolan JP, Sandroni C, Böttiger BW, Cariou A, Cronberg T, Friberg H, et al. European Resuscitation Council and European Society of Intensive Care Medicine guidelines 2021: post-resuscitation care. Intensive Care Med. 2021;47:369–421.
    1. Palmer E, Post B, Klapaukh R, Marra G, MacCallum NS, Brealey D, et al. The association between supraphysiologic arterial oxygen levels and mortality in critically ill patients. A multicenter observational cohort study. Am J Respir Crit Care Med. 2019;200:1373–1380.
    1. Ni Y-N, Wang Y-M, Liang B-M, Liang Z-A. The effect of hyperoxia on mortality in critically ill patients: a systematic review and meta analysis. BMC Pulm Med. 2019;19:53.
    1. La Via L, Astuto M, Bignami EG, Basalacchi D, Dezio V, Girardis M, et al. The effects of exposure to severe hyperoxemia on neurological outcome and mortality after cardiac arrest. Minerva Anestesiol. 2022;Online ahead of print.
    1. Johnson NJ, Dodampahala K, Rosselot B, Perman SM, Mikkelsen ME, Goyal M, et al. The association between arterial oxygen tension and neurological outcome after cardiac arrest. Ther Hypothermia Temp Manag. 2017;7:36–41.
    1. Johnson NJ, Carlbom DJ, Gaieski DF. Ventilator management and respiratory care after cardiac arrest. Chest. 2018;153:1466–1477.
    1. Kilgannon JH, Jones AE, Parrillo JE, Dellinger RP, Milcarek B, Hunter K, et al. Relationship between supranormal oxygen tension and outcome after resuscitation from cardiac arrest. Circulation. 2011;123:2717–2722.
    1. Kim TJ, Kim J-M, Lee JS, Park S-H, Jeong H-B, Choi J-K, et al. Prognostication of neurological outcome after cardiac arrest using wavelet phase coherence analysis of cerebral oxygen. Resuscitation. 2020;150:41–49.
    1. Ebner F, Riker RR, Haxhija Z, Seder DB, May TL, Ullén S, et al. The association of partial pressures of oxygen and carbon dioxide with neurological outcome after out-of-hospital cardiac arrest: an explorative International Cardiac Arrest Registry 2.0 study. Scand J Trauma Resusc Emerg Med. 2020;28:67.
    1. Peluso L, Belloni I, Calabró L, Dell’Anna AM, Nobile L, Creteur J, et al. Oxygen and carbon dioxide levels in patients after cardiac arrest. Resuscitation. 2020;150:1–7.
    1. Schjørring OL, Klitgaard TL, Perner A, Wetterslev J, Lange T, Siegemund M, et al. Lower or higher oxygenation targets for acute hypoxemic respiratory failure. N Engl J Med. 2021;384:1301–1311.
    1. Young PJ, Arabi YM, Bagshaw SM, Bellomo R, Fujii T, Haniffa R, et al. Protocol and statistical analysis plan for the mega randomised registry trial research program comparing conservative versus liberal oxygenation targets in adults receiving unplanned invasive mechanical ventilation in the ICU (Mega-ROX) Crit Care Resusc. 2022;24:137–149.
    1. Schmidt H, Kjaergaard J, Hassager C, Møller JE, Mølstrøm S,Grand J, Borregaard B, et al. Blood-Pressure Targets in Comatose Survivors of Cardiac Arrest. N Engl J Med. 2022;online ahead of print.

Source: PubMed

3
Prenumerera