Gastrointestinal Contributions to the Postprandial Experience

Dan M Livovsky, Fernando Azpiroz, Dan M Livovsky, Fernando Azpiroz

Abstract

Food ingestion induces homeostatic sensations (satiety, fullness) with a hedonic dimension (satisfaction, changes in mood) that characterize the postprandial experience. Both types of sensation are secondary to intraluminal stimuli produced by the food itself, as well as to the activity of the digestive tract. Postprandial sensations also depend on the nutrient composition of the meal and on colonic fermentation of non-absorbed residues. Gastrointestinal function and the sensitivity of the digestive tract, i.e., perception of gut stimuli, are determined by inherent individual factors, e.g., sex, and can be modulated by different conditioning mechanisms. This narrative review examines the factors that determine perception of digestive stimuli and the postprandial experience.

Keywords: digestion; digestive well-being; food ingestion; functional gastrointestinal disorders; hedonic sensations; homeostatic sensations; postprandial symptoms; satiety.

Conflict of interest statement

No competing interests declared.

Figures

Figure 1
Figure 1
Gastrointestinal contributions to the ‘postprandial experience’. Meal-derived stimuli in the gut activate reflex pathways, that regulate digestive function (motility, barrier), homeostatic (satiety, fullness) and hedonic sensations (digestive well-being and mood). Sensations after ingestion are secondary to gut content and to the activity of the digestive tract. The responses to food ingestion are determined by intrinsic characteristics of the individual (constitutive factors) and are modulated by a variety of conditioning mechanisms (homeostatic, hedonic, cognitive/emotive factors).
Figure 2
Figure 2
Cognitive conditioning of the postprandial experience. On 2 separate days, the same low-fat yogurt was given to patients with functional dyspepsia correctly presented as low-fat or mislabeled as high-fat; high-fat labeling was associated with significantly more of fullness sensation than the low-fat label. “Adapted by permission from BMJ Publishing Group Limited. [Role of cognitive factors in symptom induction following high and low fat meals in patients with functional dyspepsia, Feinle-Bisset C, Meier B, Fried M, Beglinger C. Gut. 52(10):1414–8. Copyright 2003 by Gut].
Figure 3
Figure 3
Sex differences in the conditioning by eating habits. Effect of the eating schedule on postprandial sensations in healthy male and women. In women, a consistent savory lunch-type meal eaten at an unconventional time in the morning produced more fullness, but less satisfaction than at the habitual time. Men were resilient to conditioning by eating schedule. “Modified from [Influence of Eating Schedule on the Postprandial Response: Gender Differences, Masihy M, Monrroy H, Borghi G, Pribic T, Galan C, Nieto A, et al., Nutrients. 14;11, Copyright © 2021 by the authors Licensee MDPI, Basel, Switzerland, an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY)”.

References

    1. Pribic T., Azpiroz F. Biogastronomy: Factors that determine the biological response to meal ingestion. Neurogastroenterol. Motil. 2018;30:e13309. doi: 10.1111/nmo.13309.
    1. Monrroy H., Pribic T., Galan C., Nieto A., Amigo N., Accarino A., Correig X., Azpiroz F. Meal Enjoyment and Tolerance in Women and Men. Nutrients. 2019;11:119. doi: 10.3390/nu11010119.
    1. Simon J.J., Wetzel A., Sinno M.H., Skunde M., Bendszus M., Preissl H., Enck P., Herzog W., Friederich H.-C. Integration of homeostatic signaling and food reward processing in the human brain. [(accessed on 8 March 2021)];JCI Insight. 2017 2 doi: 10.1172/jci.insight.92970. Available online: .
    1. Pribic T., Kilpatrick L., Ciccantelli B., Malagelada C., Accarino A., Rovira A., Pareto D., Mayer E., Azpiroz F. Brain networks associated with cognitive and hedonic responses to a meal. Neurogastroenterol. Motil. 2017;29:e13031. doi: 10.1111/nmo.13031.
    1. Ciccantelli B., Pribic T., Malagelada C., Accarino A., Azpiroz F. Relation between cognitive and hedonic responses to a meal. Neurogastroenterol. Motil. 2017;29:e13011. doi: 10.1111/nmo.13011.
    1. Malagelada C., Barba I., Accarino A., Molne L., Mendez S., Campos E., Gonzalez A., Alonso-Cotoner C., Santos J., Malagelada J.-R., et al. Cognitive and hedonic responses to meal ingestion correlate with changes in circulating metabolites. Neurogastroenterol. Motil. 2016;28:1806–1814. doi: 10.1111/nmo.12879.
    1. Malagelada C., Pribic T., Ciccantelli B., Cañellas N., Gomez J., Amigo N., Accarino A., Correig X., Azpiroz F. Metabolomic signature of the postprandial experience. Neurogastroenterol. Motil. 2018;30:e13447. doi: 10.1111/nmo.13447.
    1. Camilleri M. Peripheral mechanisms in appetite regulation. Gastroenterology. 2015;148:1219–1233. doi: 10.1053/j.gastro.2014.09.016.
    1. Feinle-Bisset C. Upper gastrointestinal sensitivity to meal-related signals in adult humans—Relevance to appetite regulation and gut symptoms in health, obesity and functional dyspepsia. Physiol. Behav. 2016;162:69–82. doi: 10.1016/j.physbeh.2016.03.021.
    1. Tack J., Deloose E., Ang D., Scarpellini E., Vanuytsel T., Van Oudenhove L., Depoortere I. Motilin-induced gastric contractions signal hunger in man. Gut. 2016;65:214–224. doi: 10.1136/gutjnl-2014-308472.
    1. Halawi H., Camilleri M., Acosta A., Vazquez-Roque M., Oduyebo I., Burton D., Busciglio I., Zinsmeister A.R. Relationship of gastric emptying or accommodation with satiation, satiety, and postprandial symptoms in health. Am. J. Physiol. Gastrointest. Liver Physiol. 2017;313:G442–G447. doi: 10.1152/ajpgi.00190.2017.
    1. Boeckxstaens G., Camilleri M., Sifrim D., Houghton L.A., Elsenbruch S., Lindberg G., Azpiroz F., Parkman H.P. Fundamentals of Neurogastroenterology: Physiology/Motility—Sensation. Gastroenterology. 2016;150:1292–1304.e2. doi: 10.1053/j.gastro.2016.02.030.
    1. Distrutti E., Azpiroz F., Soldevilla A., Malagelada J.R. Gastric wall tension determines perception of gastric distention. Gastroenterology. 1999;116:1035–1042. doi: 10.1016/S0016-5085(99)70006-5.
    1. Azpiroz F., Feinle-Bisset C., Grundy D., Tack J. Gastric sensitivity and reflexes: Basic mechanisms underlying clinical problems. J. Gastroenterol. 2014;49:206–218. doi: 10.1007/s00535-013-0917-8.
    1. Notivol R., Coffin B., Azpiroz F., Mearin F., Serra J., Malagelada J.R. Gastric tone determines the sensitivity of the stomach to distention. Gastroenterology. 1995;108:330–336. doi: 10.1016/0016-5085(95)90057-8.
    1. Moragas G., Azpiroz F., Pavia J., Malagelada J.R. Relations among intragastric pressure, postcibal perception, and gastric emptying. Pt 1Am. J. Physiol. 1993;264:G1112–G1117. doi: 10.1152/ajpgi.1993.264.6.G1112.
    1. Kiela P.R., Ghishan F.K. Physiology of Intestinal Absorption and Secretion. Best Pract. Res. Clin. Gastroenterol. 2016;30:145–159. doi: 10.1016/j.bpg.2016.02.007.
    1. Alhabeeb H., AlFaiz A., Kutbi E., AlShahrani D., Alsuhail A., AlRajhi S., Alotaibi N., Alotaibi K., AlAmri S., Alghamdi S., et al. Gut Hormones in Health and Obesity: The Upcoming Role of Short Chain Fatty Acids. Nutrients. 2021;13:481. doi: 10.3390/nu13020481.
    1. Malagelada C., Accarino A., Molne L., Mendez S., Campos E., Gonzalez A., Malagelada J.R., Azpiroz F. Digestive, cognitive and hedonic responses to a meal. Neurogastroenterol Motil. 2015;27:389–396. doi: 10.1111/nmo.12504.
    1. Coffin B., Azpiroz F., Guarner F., Malagelada J.R. Selective gastric hypersensitivity and reflex hyporeactivity in functional dyspepsia. Gastroenterology. 1994;107:1345–1351. doi: 10.1016/0016-5085(94)90536-3.
    1. Caldarella M.P., Azpiroz F., Malagelada J.-R. Antro-fundic dysfunctions in functional dyspepsia. Gastroenterology. 2003;124:1220–1229. doi: 10.1016/S0016-5085(03)00287-7.
    1. Enck P., Azpiroz F., Boeckxstaens G., Elsenbruch S., Feinle-Bisset C., Holtmann G., Lackner J.M., Ronkainen J., Schemann M., Stengel A., et al. Functional dyspepsia. Nat. Rev. Dis. Primers. 2017;3:17081. doi: 10.1038/nrdp.2017.81.
    1. Villoria A., Azpiroz F., Soldevilla A., Perez F., Malagelada J.-R. Abdominal accommodation: A coordinated adaptation of the abdominal wall to its content. Am. J. Gastroenterol. 2008;103:2807–2815. doi: 10.1111/j.1572-0241.2008.02141.x.
    1. Burri E., Cisternas D., Villoria A., Accarino A., Soldevilla A., Malagelada J.-R., Azpiroz F. Accommodation of the abdomen to its content: Integrated abdomino-thoracic response. Neurogastroenterol. Motil. 2012;24:312-e162. doi: 10.1111/j.1365-2982.2011.01846.x.
    1. Burri E., Cisternas D., Villoria A., Accarino A., Soldevilla A., Malagelada J.-R., Azpiroz F. Abdominal accommodation induced by meal ingestion: Differential responses to gastric and colonic volume loads. Neurogastroenterol. Motil. 2013;25:339-e253. doi: 10.1111/nmo.12068.
    1. Villoria A., Azpiroz F., Burri E., Cisternas D., Soldevilla A., Malagelada J.-R. Abdomino-phrenic dyssynergia in patients with abdominal bloating and distension. Am. J. Gastroenterol. 2011;106:815–819. doi: 10.1038/ajg.2010.408.
    1. Burri E., Barba E., Huaman J.W., Cisternas D., Accarino A., Soldevilla A., Malagelada J.-R., Azpiroz F. Mechanisms of postprandial abdominal bloating and distension in functional dyspepsia. Gut. 2014;63:395–400. doi: 10.1136/gutjnl-2013-304574.
    1. Barba E., Burri E., Accarino A., Cisternas D., Quiroga S., Monclus E., Navazo I., Malagelada J.-R., Azpiroz F. Abdominothoracic mechanisms of functional abdominal distension and correction by biofeedback. Gastroenterology. 2015;148:732–739. doi: 10.1053/j.gastro.2014.12.006.
    1. Livovsky D.M., Barber C., Barba E., Accarino A., Azpiroz F. Abdominothoracic Postural Tone Influences the Sensations Induced by Meal Ingestion. Nutrients. 2021;13:658. doi: 10.3390/nu13020658.
    1. Barba E., Accarino A., Azpiroz F. Correction of Abdominal Distention by Biofeedback-Guided Control of Abdominothoracic Muscular Activity in a Randomized, Placebo-Controlled Trial. Clin. Gastroenterol. Hepatol. 2017;15:1922–1929. doi: 10.1016/j.cgh.2017.06.052.
    1. Rayner C.K., Hughes P.A. Sleisenger and Fordtran’s Gastrointestinal and Liver Disease. Elsevier; Philadelphia, PA, USA: 2021. Small Intestinal Motor and Sensory Function and Dysfunction; pp. 1580–1594.e3. Pathophysiology, Diagnosis, Management.
    1. Furness J.B., Kunze W.A.A., Clerc N., II The intestine as a sensory organ: Neural, endocrine, and immune responses. Am. J. Physiol. Gastrointest. Liver Physiol. 1999;277:G922–G928. doi: 10.1152/ajpgi.1999.277.5.G922.
    1. Bentley F.H., Smithwick R. Visceral pain produced by balloon distension of the jejunum. Lancet. 1940;236:389–391. doi: 10.1016/S0140-6736(00)91372-2.
    1. Ray B.S., Neill C.L. Abdominal Visceral Sensation in Man. Ann. Surg. 1947;126:709–723. doi: 10.1097/00000658-194711000-00006.
    1. Wilder-Smith C.H. The balancing act: Endogenous modulation of pain in functional gastrointestinal disorders. Gut. 2011;60:1589–1599. doi: 10.1136/gutjnl-2011-300253.
    1. Azpiroz F. Intestinal perception: Mechanisms and assessment. Br. J. Nutr. 2005;93(Suppl. 1):S7–S12. doi: 10.1079/BJN20041338.
    1. Ly H.G., Dupont P., Van Laere K., Depoortere I., Tack J., Van Oudenhove L. Differential brain responses to gradual intragastric nutrient infusion and gastric balloon distension: A role for gut peptides? Pt ANeuroimage. 2017;144:101–112. doi: 10.1016/j.neuroimage.2016.09.032.
    1. Accarino A.M., Azpiroz F., Malagelada J.R. Symptomatic responses to stimulation of sensory pathways in the jejunum. Pt 1Am. J. Physiol. 1992;263:G673–G677. doi: 10.1152/ajpgi.1992.263.5.G673.
    1. Serra J., Azpiroz F., Malagelada J.R. Perception and reflex responses to intestinal distention in humans are modified by simultaneous or previous stimulation. Gastroenterology. 1995;109:1742–1749. doi: 10.1016/0016-5085(95)90739-4.
    1. Serra J., Azpiroz F., Malagelada J.R. Modulation of gut perception in humans by spatial summation phenomena. Pt 2J. Physiol. 1998;506:579–587. doi: 10.1111/j.1469-7793.1998.579bw.x.
    1. Huaman J.-W., Mego M., Bendezú A., Monrroy H., Samino S., Accarino A., Saperas E., Azpiroz F. Correction of Dyssynergic Defecation, but Not Fiber Supplementation, Reduces Symptoms of Functional Dyspepsia in Patients With Constipation in a Randomized Trial. Clin. Gastroenterol. Hepatol. 2020;18:2463–2470.e1. doi: 10.1016/j.cgh.2019.11.048.
    1. Grundy D. Neuroanatomy of Visceral Nociception: Vagal and Splanchnic Afferent. Gut. 2002;51(Suppl. 1):i2–i5. doi: 10.1136/gut.51.suppl_1.i2.
    1. Azpiroz F. Gastrointestinal perception: Pathophysiological implications. Neurogastroenterol. Motil. 2002;14:229–239. doi: 10.1046/j.1365-2982.2002.00324.x.
    1. Pribic T., Vilaseca H., Nieto A., Hernandez L., Monrroy H., Malagelada C., Accarino A., Roca J., Azpiroz F. Meal composition influences postprandial sensations independently of valence and gustation. Neurogastroenterol. Motil. 2018;25:e13337. doi: 10.1111/nmo.13337.
    1. Accarino A.M., Azpiroz F., Malagelada J.R. Modification of small bowel mechanosensitivity by intestinal fat. Gut. 2001;48:690–695. doi: 10.1136/gut.48.5.690.
    1. Caldarella M.P., Azpiroz F., Malagelada J.-R. Selective effects of nutrients on gut sensitivity and reflexes. Gut. 2007;56:37–42. doi: 10.1136/gut.2004.062869.
    1. Weltens N., Zhao D., Van Oudenhove L. Where is the comfort in comfort foods? Mechanisms linking fat signaling, reward, and emotion. Neurogastroenterol. Motil. 2014;26:303–315. doi: 10.1111/nmo.12309.
    1. Bendezú R.A., Mego M., Monclus E., Merino X., Accarino A., Malagelada J.R., Navazo I., Azpiroz F. Colonic content: Effect of diet, meals, and defecation. Neurogastroenterol. Motil. 2017;29:e12930. doi: 10.1111/nmo.12930.
    1. Simrén M., Barbara G., Flint H.J., Spiegel B.M.R., Spiller R.C., Vanner S., Verdu E.F., Whorwell P.J., Zoetendal E.G. Rome Foundation Committee Intestinal Microbiota in Functional Bowel Disorders: A Rome Foundation Report. Gut. 2013;62:159–176.
    1. Aziz Q., Doré J., Emmanuel A., Guarner F., Quigley E.M.M. Gut microbiota and gastrointestinal health: Current concepts and future directions. Neurogastroenterol. Motil. 2013;25:4–15. doi: 10.1111/nmo.12046.
    1. Wu G.D., Lewis J.D. Analysis of the human gut microbiome and association with disease. Clin. Gastroenterol. Hepatol. 2013;11:774–777. doi: 10.1016/j.cgh.2013.03.038.
    1. Mayer E.A., Hsiao E.Y. The Gut and Its Microbiome as Related to Central Nervous System Functioning and Psychological Well-being: Introduction to the Special Issue of Psychosomatic Medicine. Psychosom. Med. 2017;79:844–846. doi: 10.1097/PSY.0000000000000525.
    1. Azpiroz F. Sleisenger and Fordtran’s Gastrointestinal and Liver Disease. 10th ed. Elsevier; Amsterdam, The Netherlands: 2015. Intestinal gas; pp. 242–250. Pathophysiology, Diagnosis, Management.
    1. Manichanh C., Eck A., Varela E., Roca J., Clemente J.C., González A., Knights D., Knight R., Estrella S., Hernandez C., et al. Anal gas evacuation and colonic microbiota in patients with flatulence: Effect of diet. Gut. 2014;63:401–408. doi: 10.1136/gutjnl-2012-303013.
    1. Mego M., Accarino A., Malagelada J.-R., Guarner F., Azpiroz F. Accumulative effect of food residues on intestinal gas production. Neurogastroenterol. Motil. 2015;27:1621–1628. doi: 10.1111/nmo.12662.
    1. Ceballos Inza V., MonclúsLahoya E., Vázquez Alcocer P.P., Bendezú García Á., Mego Silva M., Merino Casabiel X., AzpirozVidaur F., Navazo Álvaro I. EG VCBM 2019: Eurographics Workshop on Visual Computing for Biology and Medicine: Full and Short Paper Proceedings, Brno, Czech Republic, 4–6 September 2019. European Association for Computer Graphics (Eurographics); Geneva, Switzerland: 2019. [(accessed on 8 March 2021)]. Colonic content assessment from MRI imaging using a semi-automatic approach; pp. 17–26. Available online: .
    1. Orellana B., Monclús E., Brunet P., Navazo I., Bendezú Á., Azpiroz F. A scalable approach to T2-MRI colon segmentation. Med. Image Anal. 2020;63:101697. doi: 10.1016/j.media.2020.101697.
    1. Huaman J.-W., Mego M., Manichanh C., Cañellas N., Cañueto D., Segurola H., Jansana M., Malagelada C., Accarino A., Vulevic J., et al. Effects of Prebiotics vs a Diet Low in FODMAPs in Patients With Functional Gut Disorders. Gastroenterology. 2018;155:1004–1007. doi: 10.1053/j.gastro.2018.06.045.
    1. Azpiroz F., Molne L., Mendez S., Nieto A., Manichanh C., Mego M., Accarino A., Santos J., Sailer M., Theis S., et al. Effect of Chicory-derived Inulin on Abdominal Sensations and Bowel Motor Function. J. Clin. Gastroenterol. 2017;51:619–625. doi: 10.1097/MCG.0000000000000723.
    1. Azpiroz F., Dubray C., Bernalier-Donadille A., Cardot J.-M., Accarino A., Serra J., Wagner A., Respondek F., Dapoigny M. Effects of scFOS on the composition of fecal microbiota and anxiety in patients with irritable bowel syndrome: A randomized, double blind, placebo controlled study. Neurogastroenterol. Motil. 2017;29:e12911. doi: 10.1111/nmo.12911.
    1. Le Nevé B., de la Torre A.M., Tap J., Derrien M., Cotillard A., Barba E., Mego M., Nieto Ruiz A., Hernandez-Palet L., Dornic Q., et al. A Fermented Milk Product with, B. Lactis CNCM I-2494 and Lactic Acid Bacteria Improves Gastrointestinal Comfort in Response to a Challenge Diet Rich in Fermentable Residues in Healthy Subjects. Nutrients. 2020;12:320. doi: 10.3390/nu12020320.
    1. Hungin A.P.S., Mitchell C.R., Whorwell P., Mulligan C., Cole O., Agréus L., Fracasso P., Lionis C., Mendive J., Philippart de Foy J.-M., et al. Systematic review: Probiotics in the management of lower gastrointestinal symptoms—An updated evidence-based international consensus. Aliment. Pharmacol. Ther. 2018;47:1054–1070. doi: 10.1111/apt.14539.
    1. Sanders M.E., Merenstein D.J., Reid G., Gibson G.R., Rastall R.A. Probiotics and prebiotics in intestinal health and disease: From biology to the clinic. Nat. Rev. Gastroenterol. Hepatol. 2019;16:605–616. doi: 10.1038/s41575-019-0173-3.
    1. Guarino M.P.L., Altomare A., Emerenziani S., Di Rosa C., Ribolsi M., Balestrieri P., Iovino P., Rocchi G., Cicala M. Mechanisms of Action of Prebiotics and Their Effects on Gastro-Intestinal Disorders in Adults. Nutrients. 2020;12:1037. doi: 10.3390/nu12041037.
    1. Sauer H., Ohla K., Dammann D., Teufel M., Zipfel S., Enck P., Mack I. Changes in Gustatory Function and Taste Preference Following Weight Loss. J. Pediatr. 2017;182:120–126. doi: 10.1016/j.jpeds.2016.11.055.
    1. Livovsky D.M., Pribic T., Azpiroz F. Food, Eating, and the Gastrointestinal Tract. Nutrients. 2020;12:986. doi: 10.3390/nu12040986.
    1. Pribic T., Hernandez L., Nieto A., Malagelada C., Accarino A., Azpiroz F. Effects of meal palatability on postprandial sensations. Neurogastroenterol. Motil. 2018;30:e13248. doi: 10.1111/nmo.13248.
    1. Cabanac M. Physiological role of pleasure. Science. 1971;173:1103–1107. doi: 10.1126/science.173.4002.1103.
    1. Pribic T., Nieto A., Hernandez L., Malagelada C., Accarino A., Azpiroz F. Appetite influences the responses to meal ingestion. Neurogastroenterol. Motil. 2017;29:e13072. doi: 10.1111/nmo.13072.
    1. de Graaf C. Texture and satiation: The role of oro-sensory exposure time. Physiol. Behav. 2012;107:496–501. doi: 10.1016/j.physbeh.2012.05.008.
    1. Andrade A.M., Greene G.W., Melanson K.J. Eating slowly led to decreases in energy intake within meals in healthy women. J. Am. Diet. Assoc. 2008;108:1186–1191. doi: 10.1016/j.jada.2008.04.026.
    1. Robinson E., Almiron-Roig E., Rutters F., de Graaf C., Forde C.G., Tudur Smith C., Nolan S.J., Jebb S.A. A systematic review and meta-analysis examining the effect of eating rate on energy intake and hunger. Am. J. Clin. Nutr. 2014;100:123–151. doi: 10.3945/ajcn.113.081745.
    1. Viskaal-van Dongen M., Kok F.J., de Graaf C. Eating rate of commonly consumed foods promotes food and energy intake. Appetite. 2011;56:25–31. doi: 10.1016/j.appet.2010.11.141.
    1. Mearin F., Cucala M., Azpiroz F., Malagelada J.R. The origin of symptoms on the brain-gut axis in functional dyspepsia. Gastroenterology. 1991;101:999–1006. doi: 10.1016/0016-5085(91)90726-2.
    1. Khlevner J., Park Y., Margolis K.G. Brain–Gut Axis Clinical Implications. Gastroenterol. Clin. N. Am. 2018;47:727–739. doi: 10.1016/j.gtc.2018.07.002.
    1. Accarino A.M., Azpiroz F., Malagelada J.R. Attention and distraction: Effects on gut perception. Gastroenterology. 1997;113:415–422. doi: 10.1053/gast.1997.v113.pm9247458.
    1. Brunstrom J.M., Mitchell G.L. Effects of distraction on the development of satiety. Br. J. Nutr. 2006;96:761–769.
    1. Hardcastle S.J., Thøgersen-Ntoumani C., Chatzisarantis N.L.D. Food Choice and Nutrition: A Social Psychological Perspective. Nutrients. 2015;7:8712–8715. doi: 10.3390/nu7105424.
    1. Péneau S., Mekhmoukh A., Chapelot D., Dalix A.-M., Airinei G., Hercberg S., Bellisle F. Influence of environmental factors on food intake and choice of beverage during meals in teenagers: A laboratory study. Br. J. Nutr. 2009;102:1854–1859. doi: 10.1017/S0007114509991280.
    1. Coelho J.S., Idler A., Werle C.O.C., Jansen A. Sweet temptation: Effects of exposure to chocolate-scented lotion on food intake. Food Qual. Prefer. 2011;22:780–784. doi: 10.1016/j.foodqual.2011.06.008.
    1. Edwards J.S.A., Meiselman H.L., Edwards A., Lesher L. The influence of eating location on the acceptability of identically prepared foods. Food Qual. Prefer. 2003;14:647–652. doi: 10.1016/S0950-3293(02)00189-1.
    1. Guéguen N., Petr C. Odors and consumer behavior in a restaurant. Int. J. Hosp. Manag. 2006;25:335–339. doi: 10.1016/j.ijhm.2005.04.007.
    1. Pribic T., Vilaseca H., Nieto A., Hernandez L., Malagelada C., Accarino A., Roca J., Azpiroz F. Education of the postprandial experience by a sensory-cognitive intervention. Neurogastroenterol. Motil. 2018;30:e13197. doi: 10.1111/nmo.13197.
    1. Barba E., Sánchez B., Burri E., Accarino A., Monclus E., Navazo I., Guarner F., Margolles A., Azpiroz F. Abdominal distension after eating lettuce: The role of intestinal gas evaluated in vitro and by abdominal CT imaging. Neurogastroenterol. Motil. 2019;31:e13703. doi: 10.1111/nmo.13703.
    1. Gramsch C., Kattoor J., Icenhour A., Forsting M., Schedlowski M., Gizewski E.R., Elsenbruch S. Learning pain-related fear: Neural mechanisms mediating rapid differential conditioning, extinction and reinstatement processes in human visceral pain. Neurobiol. Learn Mem. 2014;116:36–45. doi: 10.1016/j.nlm.2014.08.003.
    1. Kattoor J., Gizewski E.R., Kotsis V., Benson S., Gramsch C., Theysohn N., Maderwald S., Forsting M., Schedlowski M., Elsenbruch S. Fear conditioning in an abdominal pain model: Neural responses during associative learning and extinction in healthy subjects. PLoS ONE. 2013;8:e51149. doi: 10.1371/journal.pone.0051149.
    1. Icenhour A., Labrenz F., Ritter C., Theysohn N., Forsting M., Bingel U., Elsenbruch S. Learning by experience? Visceral pain-related neural and behavioral responses in a classical conditioning paradigm. Neurogastroenterol. Motil. 2017;29:e13026. doi: 10.1111/nmo.13026.
    1. Yamamoto T. Central mechanisms of roles of taste in reward and eating. Acta Physiol. Hung. 2008;95:165–186. doi: 10.1556/APhysiol.95.2008.2.2.
    1. Feinle-Bisset C., Meier B., Fried M., Beglinger C. Role of cognitive factors in symptom induction following high and low fat meals in patients with functional dyspepsia. Gut. 2003;52:1414–1418. doi: 10.1136/gut.52.10.1414.
    1. Lee I.-S., Kullmann S., Scheffler K., Preissl H., Enck P. Fat label compared with fat content: Gastrointestinal symptoms and brain activity in functional dyspepsia patients and healthy controls. Am. J. Clin. Nutr. 2018;108:127–135. doi: 10.1093/ajcn/nqy077.
    1. Icenhour A., Langhorst J., Benson S., Schlamann M., Hampel S., Engler H., Forsting M., Elsenbruch S. Neural circuitry of abdominal pain-related fear learning and reinstatement in irritable bowel syndrome. Neurogastroenterol. Motil. 2015;27:114–127. doi: 10.1111/nmo.12489.
    1. Monrroy H., Borghi G., Pribic T., Galan C., Nieto A., Amigo N., Accarino A., Correig X., Azpiroz F. Biological Response to Meal Ingestion: Gender Differences. Nutrients. 2019;11:702. doi: 10.3390/nu11030702.
    1. Mearadji B., Penning C., Vu M.K., van der Schaar P.J., van Petersen A.S., Kamerling I.M., Masclee A.A. Influence of gender on proximal gastric motor and sensory function. Am. J. Gastroenterol. 2001;96:2066–2073. doi: 10.1111/j.1572-0241.2001.03940.x.
    1. Abid S., Anis M.K., Azam Z., Jafri W., Lindberg G. Satiety drinking tests: Effects of caloric content, drinking rate, gender, age, and body mass index. Scand J. Gastroenterol. 2009;44:551–556. doi: 10.1080/00365520902767546.
    1. Hutson W.R., Roehrkasse R.L., Wald A. Influence of gender and menopause on gastric emptying and motility. Gastroenterology. 1989;96:11–17. doi: 10.1016/0016-5085(89)90758-0.
    1. Bennink R., Peeters M., Van den Maegdenbergh V., Geypens B., Rutgeerts P., De Roo M., Mortelmans L. Comparison of total and compartmental gastric emptying and antral motility between healthy men and women. Eur. J. Nucl. Med. 1998;25:1293–1299. doi: 10.1007/s002590050298.
    1. Kilpatrick L., Pribic T., Ciccantelli B., Malagelada C., Livovsky D.M., Accarino A., Pareto D., Azpiroz F., Mayer E.A. Sex Differences and Commonalities in the Impact of a Palatable Meal on Thalamic and Insular Connectivity. Nutrients. 2020;12:1627. doi: 10.3390/nu12061627.
    1. Masihy M., Monrroy H., Borghi G., Pribic T., Galan C., Nieto A., Accarino A., Azpiroz F. Influence of Eating Schedule on the Postprandial Response: Gender Differences. Nutrients. 2019;11:401. doi: 10.3390/nu11020401.
    1. Benson S., Kattoor J., Kullmann J.S., Hofmann S., Engler H., Forsting M., Gizewski E.R., Elsenbruch S. Towards understanding sex differences in visceral pain: Enhanced reactivation of classically-conditioned fear in healthy women. Neurobiol. Learn. Mem. 2014;109:113–121. doi: 10.1016/j.nlm.2013.12.014.
    1. Feinle-Bisset C., Azpiroz F. Dietary and lifestyle factors in functional dyspepsia. Nat. Rev. Gastroenterol. Hepatol. 2013;10:150–157. doi: 10.1038/nrgastro.2012.246.
    1. Feinle-Bisset C., Azpiroz F. Dietary lipids and functional gastrointestinal disorders. Am. J. Gastroenterol. 2013;108:737–747. doi: 10.1038/ajg.2013.76.
    1. Feinle C., Meier O., Otto B., D’Amato M., Fried M. Role of duodenal lipid and cholecystokinin A receptors in the pathophysiology of functional dyspepsia. Gut. 2001;48:347–355. doi: 10.1136/gut.48.3.347.
    1. Fried M., Feinle C. The role of fat and cholecystokinin in functional dyspepsia. Gut. 2002;51(Suppl. 1):i54–i57. doi: 10.1136/gut.51.suppl_1.i54.
    1. Barbera R., Feinle C., Read N.W. Nutrient-specific modulation of gastric mechanosensitivity in patients with functional dyspepsia. Dig. Dis. Sci. 1995;40:1636–1641. doi: 10.1007/BF02212683.
    1. Pilichiewicz A.N., Feltrin K.L., Horowitz M., Holtmann G., Wishart J.M., Jones K.L., Talley N.J., Feinle-Bisset C. Functional dyspepsia is associated with a greater symptomatic response to fat but not carbohydrate, increased fasting and postprandial CCK, and diminished PYY. Am. J. Gastroenterol. 2008;103:2613–2623. doi: 10.1111/j.1572-0241.2008.02041.x.
    1. Böhn L., Störsrud S., Liljebo T., Collin L., Lindfors P., Törnblom H., Simrén M. Diet low in FODMAPs reduces symptoms of irritable bowel syndrome as well as traditional dietary advice: A randomized controlled trial. Gastroenterology. 2015;149:1399–1407.e2. doi: 10.1053/j.gastro.2015.07.054.
    1. Azpiroz F., Hernandez C., Guyonnet D., Accarino A., Santos J., Malagelada J.-R., Guarner F. Effect of a low-flatulogenic diet in patients with flatulence and functional digestive symptoms. Neurogastroenterol. Motil. 2014;26:779–785. doi: 10.1111/nmo.12324.
    1. Moayyedi P., Simrén M., Bercik P. Evidence-based and mechanistic insights into exclusion diets for IBS. Nat. Rev. Gastroenterol. Hepatol. 2020;17:406–413. doi: 10.1038/s41575-020-0270-3.

Source: PubMed

3
Prenumerera