Interferon-gamma as adjunctive immunotherapy for invasive fungal infections: a case series

Corine E Delsing, Mark S Gresnigt, Jenneke Leentjens, Frank Preijers, Florence Allantaz Frager, Matthijs Kox, Guillaume Monneret, Fabienne Venet, Chantal P Bleeker-Rovers, Frank L van de Veerdonk, Peter Pickkers, Alexandre Pachot, Bart Jan Kullberg, Mihai G Netea, Corine E Delsing, Mark S Gresnigt, Jenneke Leentjens, Frank Preijers, Florence Allantaz Frager, Matthijs Kox, Guillaume Monneret, Fabienne Venet, Chantal P Bleeker-Rovers, Frank L van de Veerdonk, Peter Pickkers, Alexandre Pachot, Bart Jan Kullberg, Mihai G Netea

Abstract

Background: Invasive fungal infections are very severe infections associated with high mortality rates, despite the availability of new classes of antifungal agents. Based on pathophysiological mechanisms and limited pre-clinical and clinical data, adjunctive immune-stimulatory therapy with interferon-gamma (IFN-γ) may represent a promising candidate to improve outcome of invasive fungal infections by enhancing host defence mechanisms.

Methods: In this open-label, prospective case series, we describe eight patients with invasive Candida and/or Aspergillus infections who were treated with recombinant IFN-γ (rIFN-γ, 100 μg s.c., thrice a week) for 2 weeks in addition to standard antifungal therapy.

Results: Recombinant IFN-γ treatment in patients with invasive Candida and/or Aspergillus infections partially restored immune function, as characterized by an increased HLA-DR expression in those patients with a baseline expression below 50%, and an enhanced capacity of leukocytes from treated patients to produce proinflammatory cytokines involved in antifungal defence.

Conclusions: The present study provides evidence that adjunctive immunotherapy with IFN-γ can restore immune function in fungal sepsis patients, warranting future clinical studies to assess its potential clinical benefit.

Trial registration: ClinicalTrials.gov--NCT01270490.

Figures

Figure 1
Figure 1
Screening, randomization, and follow-up of the study patients. The principal investigator was immediately notified when Candida spp. were cultured in blood. With at least one systemic inflammatory response syndrome (SIRS) symptom present in the 24 hours prior to blood culture withdrawal, and administration of systemic antifungal therapy < 72 hours, patients were deemed eligible for the ‘IFN-γ as an adjunctive treatment for candidemia’ pilot-study. In addition, 5 patients not meeting inclusion criteria but who were also treated with rIFN-γ as a therapy of last resort, were included in analysis.
Figure 2
Figure 2
Effect of rIFN-γ on ex-vivo IL-1β and TNFα production. PBMCs of patients were isolated at baseline and day 1, 2, 7, 14 and 28 after rIFN-γ administration. Isolated PBMCs were stimulated for 24 hours with LPS, PHA, C. albicans blastoconidia, or C. albicans hyphae. IL-1β (A) and TNFα (B) concentrations were measured in culture supernatants. Baseline concentrations were used as control and set at 1; subsequent measurements are plotted as the mean relative fold change ± SEM. Significant change from baseline was determined by subjecting the data to Wilcoxons signed rank test. (* = p < 0.05; ** = p < 0.01).
Figure 3
Figure 3
Effect of rIFN-γ on ex-vivo IL-17 and IL-22 production. PBMCs of patients were isolated at baseline and day 1, 2, 7, 14 and 28 after rIFN-γ administration. Isolated PBMCs were stimulated for 7 days with PHA, C. albicans blastoconidia, or C. albicans hyphae. IL-17 (A) and IL-22 (B) concentrations were measured in culture supernatants. Baseline concentrations were used as control and set at 1; subsequent measurements are plotted as the mean relative fold change ± SEM. Significant change from baseline was determined by subjecting the data to Wilcoxons signed rank test. (* = p < 0.05).
Figure 4
Figure 4
Effect of rIFN-γ on ex-vivo IL-10 production. PBMCs of patients were isolated at baseline and day 1, 2, 7, 14 and 28 after rIFN-γ administration. Isolated PBMCs were stimulated for 48 hours with LPS, PHA, C. albicans blastoconidia, or C. albicans hyphae. IL-10 concentrations were measured in culture supernatants. Baseline concentrations were used as control and set at 1; subsequent measurements are plotted as the mean relative fold change ± SEM.
Figure 5
Figure 5
mHLA-DR expression in rIFN-γ treated patients, divided into immunoparalyzed patients with baseline HLA-DR expression below 50% (solid dots), and without HLA-DR defined immunoparalysis (open dots). Data are expressed as median [IQR].

References

    1. Segal BH, Steinbach WJ. Combination antifungals: an update. Expert Rev Anti Infect Ther. 2007;14(5):883–892. doi: 10.1586/14787210.5.5.883.
    1. Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis. 2004;14(3):309–317. doi: 10.1086/421946.
    1. Gudlaugsson O, Gillespie S, Lee K, Vande Berg J, Hu J, Messer S, Herwaldt L, Pfaller M, Diekema D. Attributable mortality of nosocomial candidemia, revisited. Clin Infect Dis. 2003;14(9):1172–1177. doi: 10.1086/378745.
    1. Horn DL, Neofytos D, Anaissie EJ, Fishman JA, Steinbach WJ, Olyaei AJ, Marr KA, Pfaller MA, Chang CH, Webster KM. Epidemiology and outcomes of candidemia in 2019 patients: data from the prospective antifungal therapy alliance registry. Clin Infect Dis. 2009;14(12):1695–1703. doi: 10.1086/599039.
    1. Zaoutis TE, Argon J, Chu J, Berlin JA, Walsh TJ, Feudtner C. The epidemiology and attributable outcomes of candidemia in adults and children hospitalized in the United States: a propensity analysis. Clin Infect Dis. 2005;14(9):1232–1239. doi: 10.1086/496922.
    1. Warnock DW. Trends in the epidemiology of invasive fungal infections. Nippon Ishinkin Gakkai Zasshi. 2007;14(1):1–12. doi: 10.3314/jjmm.48.1.
    1. Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC. Hidden killers: human fungal infections. Sci Transl Med. 2012;14(165):165rv113.
    1. Rodloff C, Koch D, Schaumann R. Epidemiology and antifungal resistance in invasive candidiasis. Eur J Med Res. 2011;14(4):187–195. doi: 10.1186/2047-783X-16-4-187.
    1. Howard SJ, Cerar D, Anderson MJ, Albarrag A, Fisher MC, Pasqualotto AC, Laverdiere M, Arendrup MC, Perlin DS, Denning DW. Frequency and evolution of Azole resistance in Aspergillus fumigatus associated with treatment failure. Emerg Infect Dis. 2009;14(7):1068–1076. doi: 10.3201/eid1507.090043.
    1. Kriengkauykiat J, Ito JI, Dadwal SS. Epidemiology and treatment approaches in management of invasive fungal infections. Clin Epidemiol. 2011;14:175–191.
    1. Romani L. Immunity to fungal infections. Nat Rev. 2011;14(4):275–288.
    1. Cenci E, Mencacci A, Del Sero G, Bistoni F, Romani L. Induction of protective Th1 responses to Candida albicans by antifungal therapy alone or in combination with an interleukin-4 antagonist. J Infect Dis. 1997;14(1):217–226. doi: 10.1086/514027.
    1. Netea MG, Vonk AG, van den Hoven M, Verschueren I, Joosten LA, van Krieken JH, van den Berg WB, Van der Meer JW, Kullberg BJ. Differential role of IL-18 and IL-12 in the host defense against disseminated Candida albicans infection. Eur J Immunol. 2003;14(12):3409–3417. doi: 10.1002/eji.200323737.
    1. Chai LY, van de Veerdonk F, Marijnissen RJ, Cheng SC, Khoo AL, Hectors M, Lagrou K, Vonk AG, Maertens J, Joosten LA, Kullberg BJ, Netea MG. Anti-Aspergillus human host defence relies on type 1 T helper (Th1), rather than type 17 T helper (Th17), cellular immunity. Immunology. 2010;14(1):46–54. doi: 10.1111/j.1365-2567.2009.03211.x.
    1. Cenci E, Mencacci A, Del Sero G, Bacci A, Montagnoli C, d'Ostiani CF, Mosci P, Bachmann M, Bistoni F, Kopf M, Romani L. Interleukin-4 causes susceptibility to invasive pulmonary aspergillosis through suppression of protective type I responses. J Infect Dis. 1999;14(6):1957–1968. doi: 10.1086/315142.
    1. Centeno-Lima S, Silveira H, Casimiro C, Aguiar P, do Rosario VE. Kinetics of cytokine expression in mice with invasive aspergillosis: lethal infection and protection. FEMS Immunol Med Microbiol. 2002;14(2):167–173. doi: 10.1111/j.1574-695X.2002.tb00549.x.
    1. Ito JI. T cell immunity and vaccines against invasive fungal diseases. Immunol Invest. 2011;14(7–8):825–838.
    1. Stuehler C, Khanna N, Bozza S, Zelante T, Moretti S, Kruhm M, Lurati S, Conrad B, Worschech E, Stevanovic S, Krappmann S, Einsele H, Latgé JP, Loeffler J, Romani L, Topp MS. Cross-protective TH1 immunity against Aspergillus fumigatus and Candida albicans. Blood. 2011;14(22):5881–5891. doi: 10.1182/blood-2010-12-325084.
    1. Schroder K, Hertzog PJ, Ravasi T, Hume DA. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol. 2004;14(2):163–189.
    1. Lehrnbecher T, Tramsen L, Koehl U, Schmidt S, Bochennek K, Klingebiel T. Immunotherapy against invasive fungal diseases in stem cell transplant recipients. Immunol Invest. 2011;14(7–8):839–852.
    1. Stevens DA, Brummer E, Clemons KV. Interferon- gamma as an antifungal. J Infect Dis. 2006;14(Suppl 1):S33–S37.
    1. Group TICGDCS. A controlled trial of interferon gamma to prevent infection in chronic granulomatous disease. N Engl J Med. 1991;14(8):509–516.
    1. Riddell LA, Pinching AJ, Hill S, Ng TT, Arbe E, Lapham GP, Ash S, Hillman R, Tchamouroff S, Denning DW, Parkin JM. A phase III study of recombinant human interferon gamma to prevent opportunistic infections in advanced HIV disease. AIDS Res Hum Retroviruses. 2001;14(9):789–797. doi: 10.1089/088922201750251981.
    1. Bodasing N, Seaton RA, Shankland GS, Pithie A. Gamma-interferon treatment for resistant oropharyngeal candidiasis in an HIV-positive patient. J Antimicrob Chemother. 2002;14(5):765–766. doi: 10.1093/jac/dkf206.
    1. Jarvis JN, Meintjes G, Rebe K, Williams GN, Bicanic T, Williams A, Schutz C, Bekker LG, Wood R, Harrison TS. Adjunctive interferon-gamma immunotherapy for the treatment of HIV-associated cryptococcal meningitis: a randomized controlled trial. Aids. 2012;14(9):1105–1113. doi: 10.1097/QAD.0b013e3283536a93.
    1. Poynton CH, Barnes RA, Rees J. Interferon gamma and granulocyte-macrophage colony-stimulating factor for the treatment of hepatosplenic candidosis in patients with acute leukemia. Clin Infect Dis. 1998;14(1):239–240. doi: 10.1086/517077.
    1. Dignani MC, Rex JH, Chan KW, Dow G, deMagalhaes-Silverman M, Maddox A, Walsh T, Anaissie E. Immunomodulation with interferon-gamma and colony-stimulating factors for refractory fungal infections in patients with leukemia. Cancer. 2005;14(1):199–204. doi: 10.1002/cncr.21142.
    1. Armstrong-James D, Teo IA, Shrivastava S, Petrou MA, Taube D, Dorling A, Shaunak S. Exogenous interferon-gamma immunotherapy for invasive fungal infections in kidney transplant patients. Am J Transplant. 2010;14(8):1796–1803. doi: 10.1111/j.1600-6143.2010.03094.x.
    1. Pappas PG, Kauffman CA, Andes D, Benjamin DK Jr, Calandra TF, Edwards JE Jr, Filler SG, Fisher JF, Kullberg BJ, Ostrosky-Zeichner L, Reboli AC, Rex JH, Walsh TJ, Sobel JD. Infectious Diseases Society of America. Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis. 2009;14(5):503–535. doi: 10.1086/596757.
    1. Oude Lashof AJ, Meis JFG, Warris A, van 't Wout JW, Natsch S, Van Zanten A, Verweij PE, Kullberg BJ. JJWM. Optimalisation of the antibiotic policy in the Netherlands XIII. Dutch Working Party on Antibiotic Policy (SWAB) guideline for the treatment of invasive fungal infections. Nederlands tijdschrift voor geneeskunde. 2009;14:A901.
    1. Leentjens J, Kox M, Koch RM, Preijers F, Joosten LA, van der Hoeven JG, Netea MG, Pickkers P. Reversal of Immunoparalysis in Humans In Vivo: A Double-Blind, Placebo-controlled, Randomized Pilot Study. Am J Respir Crit Care Med. 2012;14(9):838–845. doi: 10.1164/rccm.201204-0645OC.
    1. Netea MG, Warris A, Van der Meer JW, Fenton MJ, Verver-Janssen TJ, Jacobs LE, Andresen T, Verweij PE, Kullberg BJ. Aspergillus fumigatus evades immune recognition during germination through loss of toll-like receptor-4-mediated signal transduction. J Infect Dis. 2003;14(2):320–326. doi: 10.1086/376456.
    1. van de Veerdonk FL, Marijnissen RJ, Kullberg BJ, Koenen HJ, Cheng SC, Joosten I, van den Berg WB, Williams DL, van der Meer JW, Joosten LA, Netea MG. The macrophage mannose receptor induces IL-17 in response to Candida albicans. Cell Host Microbe. 2009;14(4):329–340. doi: 10.1016/j.chom.2009.02.006.
    1. De Pauw B, Walsh TJ, Donnelly JP, Stevens DA, Edwards JE, Calandra T, Pappas PG, Maertens J, Lortholary O, Kauffman CA, Denning DW, Patterson TF, Maschmeyer G, Bille J, Dismukes WE, Herbrecht R, Hope WW, Kibbler CC, Kullberg BJ, Marr KA, Muñoz P, Odds FC, Perfect JR, Restrepo A, Ruhnke M, Segal BH, Sobel JD, Sorrell TC, Viscoli C, Wingard JR. et al.Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin Infect Dis. 2008;14(12):1813–1821. doi: 10.1086/588660.
    1. Eyerich S, Wagener J, Wenzel V, Scarponi C, Pennino D, Albanesi C, Schaller M, Behrendt H, Ring J, Schmidt-Weber CB, Cavani A, Mempel M, Traidl-Hoffmann C, Eyerich K. IL-22 and TNF-alpha represent a key cytokine combination for epidermal integrity during infection with Candida albicans. Eur J Immunol. 2011;14(7):1894–1901. doi: 10.1002/eji.201041197.
    1. Gresnigt MS, Netea MG, van de Veerdonk FL. Pattern recognition receptors and their role in invasive aspergillosis. Ann N Y Acad Sci. 2012;14(1):60–67. doi: 10.1111/j.1749-6632.2012.06759.x.
    1. Sainz J, Salas-Alvarado I, Lopez-Fernandez E, Olmedo C, Comino A, Garcia F, Blanco A, Gomez-Lopera S, Oyonarte S, Bueno P, Jurado M. TNFR1 mRNA expression level and TNFR1 gene polymorphisms are predictive markers for susceptibility to develop invasive pulmonary aspergillosis. Int J Immunopathol Pharmacol. 2010;14(2):423–436.
    1. Warris A, Bjorneklett A, Gaustad P. Invasive pulmonary aspergillosis associated with infliximab therapy. N Engl J Med. 2001;14(14):1099–1100.
    1. Bellocchio S, Montagnoli C, Bozza S, Gaziano R, Rossi G, Mambula SS, Vecchi A, Mantovani A, Levitz SM, Romani L. The contribution of the Toll-like/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo. J Immunol. 2004;14(5):3059–3069.
    1. Sainz J, Perez E, Gomez-Lopera S, Jurado M. IL1 gene cluster polymorphisms and its haplotypes may predict the risk to develop invasive pulmonary aspergillosis and modulate C-reactive protein level. J Clin Immunol. 2008;14(5):473–485. doi: 10.1007/s10875-008-9197-0.
    1. De Luca A, Zelante T, D'Angelo C, Zagarella S, Fallarino F, Spreca A, Iannitti RG, Bonifazi P, Renauld JC, Bistoni F, Puccetti P, Romani L. IL-22 defines a novel immune pathway of antifungal resistance. Mucosal Immunol. 2010;14(4):361–373. doi: 10.1038/mi.2010.22.
    1. Gessner MA, Werner JL, Lilly LM, Nelson MP, Metz AE, Dunaway CW, Chan YR, Ouyang W, Brown GD, Weaver CT, Steele C. Dectin-1-dependent interleukin-22 contributes to early innate lung defense against Aspergillus fumigatus. Infect Immun. 2012;14(1):410–417. doi: 10.1128/IAI.05939-11.
    1. Lin L, Ibrahim AS, Xu X, Farber JM, Avanesian V, Baquir B, Fu Y, French SW, Edwards JE Jr, Spellberg B. Th1-Th17 cells mediate protective adaptive immunity against Staphylococcus aureus and Candida albicans infection in mice. PLoS Pathog. 2009;14(12):e1000703. doi: 10.1371/journal.ppat.1000703.
    1. Milner JD, Brenchley JM, Laurence A, Freeman AF, Hill BJ, Elias KM, Kanno Y, Spalding C, Elloumi HZ, Paulson ML, Davis J, Hsu A, Asher AI, O'Shea J, Holland SM, Paul WE, Douek DC. Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature. 2008;14(7188):773–776. doi: 10.1038/nature06764.
    1. Smeekens SP, Henriet SS, Gresnigt MS, Joosten LA, Hermans PW, Netea MG, Warris A, van de Veerdonk FL. Low interleukin-17A production in response to fungal pathogens in patients with chronic granulomatous disease. J Interferon Cytokine Res. 2012;14(4):159–168. doi: 10.1089/jir.2011.0046.
    1. Saulsbury FT. Successful treatment of aspergillus brain abscess with itraconazole and interferon-gamma in a patient with chronic granulomatous disease. Clin Infect Dis. 2001;14(10):E137–E139. doi: 10.1086/320158.
    1. Pasic S, Abinun M, Pistignjat B, Vlajic B, Rakic J, Sarjanovic L, Ostojic N. Aspergillus osteomyelitis in chronic granulomatous disease: treatment with recombinant gamma-interferon and itraconazole. Pediatr Infect Dis J. 1996;14(9):833–834. doi: 10.1097/00006454-199609000-00021.
    1. Malmvall BE, Follin P. Successful interferon-gamma therapy in a chronic granulomatous disease (CGD) patient suffering from Staphylococcus aureus hepatic abscess and invasive Candida albicans infection. Scand J Infect Dis. 1993;14(1):61–66.
    1. Ellis M, Watson R, McNabb A, Lukic ML, Nork M. Massive intracerebral aspergillosis responding to combination high dose liposomal amphotericin B and cytokine therapy without surgery. J Med Microbiol. 2002;14(1):70–75.
    1. Kelleher P, Goodsall A, Mulgirigama A, Kunst H, Henderson DC, Wilson R, Newman-Taylor A, Levin M. Interferon-gamma therapy in two patients with progressive chronic pulmonary aspergillosis. Eur Respir J. 2006;14(6):1307–1310. doi: 10.1183/09031936.06.00021705.
    1. Netea MG, Brouwer AE, Hoogendoorn EH, Van der Meer JW, Koolen M, Verweij PE, Kullberg BJ. Two patients with cryptococcal meningitis and idiopathic CD4 lymphopenia: defective cytokine production and reversal by recombinant interferon- gamma therapy. Clin Infect Dis. 2004;14(9):e83–e87. doi: 10.1086/425121.
    1. Pappas PG, Rex JH, Lee J, Hamill RJ, Larsen RA, Powderly W, Kauffman CA, Hyslop N, Mangino JE, Chapman S, Horowitz HW, Edwards JE, Dismukes WE. NIAID Mycoses Study Group. A prospective observational study of candidemia: epidemiology, therapy, and influences on mortality in hospitalized adult and pediatric patients. Clin Infect Dis. 2003;14(5):634–643. doi: 10.1086/376906.
    1. Leentjens J, Kox M, van der Hoeven JG, Netea MG, Pickkers P. Immunotherapy for the adjunctive treatment of sepsis: from immunosuppression to immunostimulation. Time for a paradigm change? Am J Respir Crit Care Med. 2013;14(12):1287–1293. doi: 10.1164/rccm.201301-0036CP. doi:10.1164/rccm.201301-0036CP.
    1. Docke WD, Randow F, Syrbe U, Krausch D, Asadullah K, Reinke P, Volk HD, Kox W. Monocyte deactivation in septic patients: restoration by IFN-gamma treatment. Nat Med. 1997;14(6):678–681. doi: 10.1038/nm0697-678.
    1. Carson WF, Cavassani KA, Dou Y, Kunkel SL. Epigenetic regulation of immune cell functions during post-septic immunosuppression. Epigenetics. 2011;14(3):273–283. doi: 10.4161/epi.6.3.14017.
    1. Armstrong-James D, Teo I, Herbst S, Petrou M, Shiu KY, McLean A, Taube D, Dorling A, Shaunak S. Renal allograft recipients fail to increase interferon-gamma during invasive fungal diseases. Am J Transplant. 2012;14(12):3437–3440. doi: 10.1111/j.1600-6143.2012.04254.x.
    1. Turrel-Davin F, Venet F, Monnin C, Barbalat V, Cerrato E, Pachot A, Lepape A, Alberti-Segui C, Monneret G. mRNA-based approach to monitor recombinant gamma-interferon restoration of LPS-induced endotoxin tolerance. Crit Care. 2011;14(5):R252. doi: 10.1186/cc10513.
    1. Chen J, Ivashkiv LB. IFN-gamma abrogates endotoxin tolerance by facilitating Toll-like receptor-induced chromatin remodeling. Proc Natl Acad Sci U S A. 2010;14(45):19438–19443. doi: 10.1073/pnas.1007816107.
    1. Xiong Y, Medvedev AE. Induction of endotoxin tolerance in vivo inhibits activation of IRAK4 and increases negative regulators IRAK-M, SHIP-1, and A20. J Leukoc Biol. 2011;14(6):1141–1148. doi: 10.1189/jlb.0611273.
    1. Tortorano AM, Kibbler C, Peman J, Bernhardt H, Klingspor L, Grillot R. Candidaemia in Europe: epidemiology and resistance. Int J Antimicrob Agents. 2006;14(5):359–366. doi: 10.1016/j.ijantimicag.2006.01.002.

Source: PubMed

3
Prenumerera