PROTECT: Prospective Phase-II-Trial Evaluating Adaptive Proton Therapy for Cervical Cancer to Reduce the Impact on Morbidity and the Immune System

Anouk Corbeau, Remi A Nout, Jan Willem M Mens, Nanda Horeweg, Jérémy Godart, Ellen M Kerkhof, Sander C Kuipers, Mariette I E van Poelgeest, Judith R Kroep, Ingrid A Boere, Helena C van Doorn, Mischa S Hoogeman, Uulke A van der Heide, Hein Putter, Marij J P Welters, Sjoerd H van der Burg, Carien L Creutzberg, Stephanie M de Boer, Anouk Corbeau, Remi A Nout, Jan Willem M Mens, Nanda Horeweg, Jérémy Godart, Ellen M Kerkhof, Sander C Kuipers, Mariette I E van Poelgeest, Judith R Kroep, Ingrid A Boere, Helena C van Doorn, Mischa S Hoogeman, Uulke A van der Heide, Hein Putter, Marij J P Welters, Sjoerd H van der Burg, Carien L Creutzberg, Stephanie M de Boer

Abstract

External beam radiation therapy (EBRT) with concurrent chemotherapy followed by brachytherapy is a very effective treatment for locally advanced cervical cancer (LACC). However, treatment-related toxicity is common and reduces the patient's quality of life (QoL) and ability to complete treatment or undergo adjuvant therapies. Intensity modulated proton therapy (IMPT) enables a significant dose reduction in organs at risk (OAR), when compared to that of standard intensity-modulated radiation therapy (IMRT) or volumetric-modulated arc therapy (VMAT). However, clinical studies evaluating whether IMPT consequently reduces side effects for LACC are lacking. The PROTECT trial is a nonrandomized prospective multicenter phase-II-trial comparing clinical outcomes after IMPT or IMRT/VMAT in LACC. Thirty women aged >18 years with a histological diagnosis of LACC will be included in either the IMPT or IMRT/VMAT group. Treatment includes EBRT (45 Gy in 25 fractions of 1.8 Gy), concurrent five weekly cisplatin (40 mg/m2), and 3D image (MRI)-guided adaptive brachytherapy. The primary endpoint is pelvic bones Dmean and mean bowel V15Gy. Secondary endpoints include dosimetric parameters, oncological outcomes, health-related QoL, immune response, safety, and tolerability. This study provides the first data on the potential of IMPT to reduce OAR dose in clinical practice and improve toxicity and QoL for patients with LACC.

Keywords: bone marrow; bowel; cervical cancer; chemoradiotherapy; dose reduction; proton therapy; quality of life; toxicity.

Conflict of interest statement

R.A.N. reports to have received research grants from Dutch Cancer Society, Dutch Research Council, Elekta, and Accuray, and a research grant for this work by Varian Medical Systems. N.H. reports to have received research grants from the Dutch Cancer Society and Varian Medical Systems. J.G. reports to have received a research grant for this work by Varian Medical Systems. J.R.K. reports to have received research grants from Amgen, Astra Zeneca, Novartis, Philips, and Sanofi, and is on the advisory board for Astra Zeneca, Eisai, Lilly, MSD, Novartis, Roche, Pfizer, and Tesaro/GSK. M.S.H. reports to have received research grants from Varian Medical Systems and clinical advisory membership of Accuray. S.H.v.d.B. reports to be a consultant for CHDR Innovation Services and member of the advisory board for ISA Pharmaceuticals, PCI Biotech, DCprime, and AGLAIA. C.L.C. reports a nonfinancial support (research platform to institution) from Elekta, compensation for IDMC membership (paid to institution) by Merck, and a research grant for this work by Varian Medical Systems. S.M.d.B. reports to have received a research grant for this work by Varian Medical Systems. All other authors declare no conflicts of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
A typical dose distribution for the para-aortic region for IMRT (left) and IMPT (right) [24].
Figure 2
Figure 2
Schematic scheme of PROTECT’s study design. IMRT, intensity-modulated radiation therapy; VMAT, volumetric-modulated arc therapy; IMPT, intensity modulated proton therapy.
Figure 3
Figure 3
Sample size calculation to determine power to detect significant differences in pelvic bones Dmean (Gy (left) and bowel mean V15Gy (cc) (right) when comparing IMPT and IMRT/VMAT.
Figure 4
Figure 4
Overview of data collection points per patient enrolled in the PROTECT trial. *, data collection point; EBRT, external beam radiation therapy; W, week; M, month; MRI, magnetic resonance imaging; QoL, quality of life.

References

    1. Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021;71:209–249. doi: 10.3322/caac.21660.
    1. Dutch Cancer Registry—Cijfers over Kanker. [(accessed on 21 June 2021)]. Available online: .
    1. Wenzel H.H.B., Bekkers R.L.M., Lemmens V.E.P.P., Van der Aa M.A., Nijman H.W. No improvement in survival of older women with cervical cancer—A nationwide study. Eur. J. Cancer. 2021;151:159–167. doi: 10.1016/j.ejca.2021.04.014.
    1. Cibula D., Pötter R., Planchamp F., Avall-Lundqvist E., Fischerova D., Haie-Meder C., Köhler C., Landoni F., Lax S., Lindegaard J.C. The European Society of Gynaecological Oncology/European Society for Radiotherapy and Oncology/European Society of Pathology guidelines for the management of patients with cervical cancer. Virchows Arch. 2018;472:919–936. doi: 10.1007/s00428-018-2362-9.
    1. Pötter R., Georg P., Dimopoulos J.C., Grimm M., Berger D., Nesvacil N., Georg D., Schmid M.P., Reinthaller A., Sturdza A., et al. Clinical outcome of protocol based image (MRI) guided adaptive brachytherapy combined with 3D conformal radiotherapy with or without chemotherapy in patients with locally advanced cervical cancer. Radiother. Oncol. 2011;100:116–123. doi: 10.1016/j.radonc.2011.07.012.
    1. Horeweg N., Creutzberg C.L., Rijkmans E.C., Laman M.S., Velema L.A., Coen V., Stam T.C., Kerkhof E.M., Kroep J.R., de Kroon C.D., et al. Efficacy and toxicity of chemoradiation with image-guided adaptive brachytherapy for locally advanced cervical cancer. Int. J. Gynecol. Cancer. 2019;29:257–265. doi: 10.1136/ijgc-2018-000057.
    1. Rijkmans E.C., Nout R.A., Rutten I.H., Ketelaars M., Neelis K.J., Laman M.S., Coen V.L., Gaarenstroom K.N., Kroep J.R., Creutzberg C.L. Improved survival of patients with cervical cancer treated with image-guided brachytherapy compared with conventional brachytherapy. Gynecol. Oncol. 2014;135:231–238. doi: 10.1016/j.ygyno.2014.08.027.
    1. Pötter R., Tanderup K., Schmid M.P., Jürgenliemk-Schulz I., Haie-Meder C., Fokdal L.U., Sturdza A.E., Hoskin P., Mahantshetty U., Segedin B., et al. MRI-guided adaptive brachytherapy in locally advanced cervical cancer (EMBRACE-I): A multicentre prospective cohort study. Lancet Oncol. 2021;22:538–547. doi: 10.1016/S1470-2045(20)30753-1.
    1. Heijkoop S.T., Nout R.A., Quint S., Mens J.W.M., Heijmen B.J.M., Hoogeman M.S. Dynamics of patient reported quality of life and symptoms in the acute phase of online adaptive external beam radiation therapy for locally advanced cervical cancer. Gynecol. Oncol. 2017;147:439–449. doi: 10.1016/j.ygyno.2017.08.009.
    1. Fokdal L., Pötter R., Kirchheiner K., Lindegaard J.C., Jensen N.B.K., Kirisits C., Chargari C., Mahantshetty U., Jürgenliemk-Schulz I.M., Segedin B., et al. Physician assessed and patient reported urinary morbidity after radio-chemotherapy and image guided adaptive brachytherapy for locally advanced cervical cancer. Radiother. Oncol. 2018;127:423–430. doi: 10.1016/j.radonc.2018.05.002.
    1. Kirchheiner K., Pötter R., Tanderup K., Lindegaard J.C., Haie-Meder C., Petrič P., Mahantshetty U., Jürgenliemk-Schulz I.M., Rai B., Cooper R., et al. Health-Related Quality of Life in Locally Advanced Cervical Cancer Patients After Definitive Chemoradiation Therapy Including Image Guided Adaptive Brachytherapy: An Analysis From the EMBRACE Study. Int. J. Radiat. Oncol. Biol. Phys. 2016;94:1088–1098. doi: 10.1016/j.ijrobp.2015.12.363.
    1. Nomden C.N., de Leeuw A.A., Roesink J.M., Tersteeg R.J., Moerland M.A., Witteveen P.O., Schreuder H.W., van Dorst E.B., Jürgenliemk-Schulz I.M. Clinical outcome and dosimetric parameters of chemo-radiation including MRI guided adaptive brachytherapy with tandem-ovoid applicators for cervical cancer patients: A single institution experience. Radiother. Oncol. 2013;107:69–74. doi: 10.1016/j.radonc.2013.04.006.
    1. Sini C., Noris Chiorda B., Gabriele P., Sanguineti G., Morlino S., Badenchini F., Cante D., Carillo V., Gaetano M., Giandini T., et al. Patient-reported intestinal toxicity from whole pelvis intensity-modulated radiotherapy: First quantification of bowel dose-volume effects. Radiother. Oncol. 2017;124:296–301. doi: 10.1016/j.radonc.2017.07.005.
    1. Ramlov A., Pedersen E.M., Røhl L., Worm E., Fokdal L., Lindegaard J.C., Tanderup K. Risk Factors for Pelvic Insufficiency Fractures in Locally Advanced Cervical Cancer Following Intensity Modulated Radiation Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2017;97:1032–1039. doi: 10.1016/j.ijrobp.2017.01.026.
    1. Kavanagh B.D., Pan C.C., Dawson L.A., Das S.K., Li X.A., Ten Haken R.K., Miften M. Radiation Dose–Volume Effects in the Stomach and Small Bowel. Int. J. Radiat. Oncol. Biol. Phys. 2010;76:S101–S107. doi: 10.1016/j.ijrobp.2009.05.071.
    1. Lee T.F., Huang E.Y. The different dose-volume effects of normal tissue complication probability using LASSO for acute small-bowel toxicity during radiotherapy in gynecological patients with or without prior abdominal surgery. Biomed. Res. Int. 2014;2014:143020. doi: 10.1155/2014/143020.
    1. van Meir H., Nout R., Welters M., Loof N., De Kam M., Van Ham J., Samuels S., Kenter G., Cohen A., Melief C. Impact of (chemo) radiotherapy on immune cell composition and function in cervical cancer patients. Oncoimmunology. 2017;6:e1267095. doi: 10.1080/2162402X.2016.1267095.
    1. Horeweg N., Mittal P., Gradowska P.L., Boere I., Chopra S., Nout R.A. Adjuvant Systemic Therapy after Chemoradiation and Brachytherapy for Locally Advanced Cervical Cancer: A Systematic Review and Meta-Analysis. Cancers. 2021;13:1880. doi: 10.3390/cancers13081880.
    1. Huang J., Gu F., Ji T., Zhao J., Li G. Pelvic bone marrow sparing intensity modulated radiotherapy reduces the incidence of the hematologic toxicity of patients with cervical cancer receiving concurrent chemoradiotherapy: A single-center prospective randomized controlled trial. Radiat. Oncol. 2020;15:1–9. doi: 10.1186/s13014-020-01606-3.
    1. Rose B.S., Aydogan B., Liang Y., Yeginer M., Hasselle M.D., Dandekar V., Bafana R., Yashar C.M., Mundt A.J., Roeske J.C. Normal tissue complication probability modeling of acute hematologic toxicity in cervical cancer patients treated with chemoradiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2011;79:800–807. doi: 10.1016/j.ijrobp.2009.11.010.
    1. Mell L.K., Kochanski J.D., Roeske J.C., Haslam J.J., Mehta N., Yamada S.D., Hurteau J.A., Collins Y.C., Lengyel E., Mundt A.J. Dosimetric predictors of acute hematologic toxicity in cervical cancer patients treated with concurrent cisplatin and intensity-modulated pelvic radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2006;66:1356–1365. doi: 10.1016/j.ijrobp.2006.03.018.
    1. Chang Y., Yang Z.-Y., Li G.-L., Li Q., Yang Q., Fan J.-Q., Zhao Y.-C., Song Y.-Q., Wu G. Correlations between radiation dose in bone marrow and hematological toxicity in patients with cervical cancer: A comparison of 3DCRT, IMRT, and RapidARC. Int. J. Gynecol. Cancer. 2016;26:770–776. doi: 10.1097/IGC.0000000000000660.
    1. Corbeau A., Kuipers S.C., de Boer S.M., Horeweg N., Hoogeman M.S., Godart J., Nout R.A. Correlations between bone marrow radiation dose and hematologic toxicity in locally advanced cervical cancer patients receiving chemoradiation with cisplatin: A systematic review. Radiother. Oncol. 2021;164:128–137. doi: 10.1016/j.radonc.2021.09.009.
    1. van de Sande M.A.E., Creutzberg C.L., van de Water S., Sharfo A.W., Hoogeman M.S. Which cervical and endometrial cancer patients will benefit most from intensity-modulated proton therapy? Radiother. Oncol. 2016;120:397–403. doi: 10.1016/j.radonc.2016.06.016.
    1. Gort E.M., Beukema J.C., Matysiak W., Sijtsema N.M., Aluwini S., Langendijk J.A., Both S., Brouwer C.L. Inter-fraction motion robustness and organ sparing potential of proton therapy for cervical cancer. Radiother. Oncol. 2021;154:194–200. doi: 10.1016/j.radonc.2020.09.022.
    1. Lin L.L., Kirk M., Scholey J., Taku N., Kiely J.B., White B., Both S. Initial Report of Pencil Beam Scanning Proton Therapy for Posthysterectomy Patients With Gynecologic Cancer. Int. J. Radiat Oncol. Biol. Phys. 2016;95:181–189. doi: 10.1016/j.ijrobp.2015.07.2205.
    1. Xu M.J., Maity A., Vogel J., Kirk M., Zhai H., Both S., Lin L.L. Proton Therapy Reduces Normal Tissue Dose in Extended-Field Pelvic Radiation for Endometrial Cancer. Int. J. Part. Ther. 2018;4:1–11. doi: 10.14338/IJPT-17-00027.1.
    1. Verma V., Simone C.B., Wahl A.O., Beriwal S., Mehta M.P. Proton radiotherapy for gynecologic neoplasms. Acta Oncol. 2016;55:1257–1265. doi: 10.1080/0284186X.2016.1205218.
    1. Pötter R., Tanderup K., Kirisits C., de Leeuw A., Kirchheiner K., Nout R., Tan L.T., Haie-Meder C., Mahantshetty U., Segedin B. The EMBRACE II study: The outcome and prospect of two decades of evolution within the GEC-ESTRO GYN working group and the EMBRACE studies. Clin. Transl. Radiat. Oncol. 2018;9:48–60. doi: 10.1016/j.ctro.2018.01.001.
    1. NCI Common Terminology Criteria for Adverse Events (CTCAE) Version 5.0. [(accessed on 17 August 2021)]; Available online: .
    1. Heijkoop S.T., Langerak T.R., Quint S., Bondar L., Mens J.W.M., Heijmen B.J., Hoogeman M.S. Clinical implementation of an online adaptive plan-of-the-day protocol for nonrigid motion management in locally advanced cervical cancer IMRT. Int. J. Radiat. Oncol. Biol. Phys. 2014;90:673–679. doi: 10.1016/j.ijrobp.2014.06.046.
    1. Ramlov A., Kroon P.S., Jürgenliemk-Schulz I.M., De Leeuw A.A., Gormsen L.C., Fokdal L.U., Tanderup K., Lindegaard J.C. Impact of radiation dose and standardized uptake value of (18) FDG PET on nodal control in locally advanced cervical cancer. Acta Oncol. 2015;54:1567–1573. doi: 10.3109/0284186X.2015.1061693.
    1. Verma V., Mishra M.V., Mehta M.P. A systematic review of the cost and cost-effectiveness studies of proton radiotherapy. Cancer. 2016;122:1483–1501. doi: 10.1002/cncr.29882.
    1. Protonentherapie (Zvw) [(accessed on 8 July 2021)]. Available online: .
    1. Arimoto T., Kitagawa T., Tsujii H., Ohhara K. High-energy proton beam radiation therapy for gynecologic malignancies. Potential of proton beam as an alternative to brachytherapy. Cancer. 1991;68:79–83. doi: 10.1002/1097-0142(19910701)68:1<79::AID-CNCR2820680116>;2-9.
    1. Kagei K., Tokuuye K., Okumura T., Ohara K., Shioyama Y., Sugahara S., Akine Y. Long-term results of proton beam therapy for carcinoma of the uterine cervix. Int. J. Radiat Oncol. Biol. Phys. 2003;55:1265–1271. doi: 10.1016/S0360-3016(02)04075-0.
    1. Tsujii H., Tsuji H., Inada T., Maruhashi A., Hayakawa Y., Takada Y., Tada J., Fukumoto S., Tatuzaki H., Ohara K. Clinical results of fractionated proton therapy. Int. J. Radiat. Oncol. Biol. Phys. 1993;25:49–60. doi: 10.1016/0360-3016(93)90144-K.
    1. Arians N., Lindel K., Krisam J., Herfarth K., Krug D., Akbaba S., Oelmann-Avendano J., Debus J. Prospective phase-II-study evaluating postoperative radiotherapy of cervical and endometrial cancer patients using protons—The APROVE-trial. Radiat. Oncol. 2017;12:188. doi: 10.1186/s13014-017-0926-5.

Source: PubMed

3
Prenumerera