Acute exacerbations of chronic obstructive pulmonary disease: in search of diagnostic biomarkers and treatable traits

Alexander G Mathioudakis, Wim Janssens, Pradeesh Sivapalan, Aran Singanayagam, Mark T Dransfield, Jens-Ulrik Stæhr Jensen, Jørgen Vestbo, Alexander G Mathioudakis, Wim Janssens, Pradeesh Sivapalan, Aran Singanayagam, Mark T Dransfield, Jens-Ulrik Stæhr Jensen, Jørgen Vestbo

Abstract

Acute exacerbations of chronic obstructive pulmonary disease (COPD) are associated with a significant mortality, health and economic burden. Their diagnosis, assessment and management remain suboptimal and unchanged for decades. Recent clinical and translational studies revealed that the significant heterogeneity in mechanisms and outcomes of exacerbations could be resolved by grouping them etiologically. This is anticipated to lead to a better understanding of the biological processes that underlie each type of exacerbation and to allow the introduction of precision medicine interventions that could improve outcomes. This review summarises novel data on the diagnosis, phenotyping, targeted treatment and prevention of COPD exacerbations.

Keywords: COPD Exacerbations.

Conflict of interest statement

Competing interests: All authors have completed the ICMJE uniform disclosure form and declare no support by or financial relationship with any organisation that might have an interest in the submitted work in the previous 5 years. AGM reports grants from Boehringer Ingelheim, outside the submitted work. WJ reports grants from AstraZeneca, Boehringer Ingelheim and Chiesi Pharmaceuticals, outside the submitted work. PS reports personal fees from Boehringer Ingelheim and non-financial support from Novartis, outside the submitted work. AS reports personal fees from AstraZeneca, outside the submitted work. MD reports grants from the American Lung Association, NIH, Department of Veteran Affairs and the department of defence; personal fees and other support from Boehringer Ingelheim, GlaxoSmithKline, AstraZeneca, PneumRx/BTG; personal fees from Mereo and Quark Pharmaceuticals; non-financial and other support from Pulmonx; other support from Boston Scientific, Novartis, Yungjin, Gala and Nuvaira; outside the submitted work. JV reports personal fees from Chiesi Pharmaceuticals, Boehringer-Ingelheim, Novartis, AstraZeneca and GlaxoSmithKline, outside the submitted work.

© Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY. Published by BMJ.

Figures

Figure 1
Figure 1
Characterisation and aetiological treatment of acute exacerbations of chronic obstructive pulmonary disease.

References

    1. Vogelmeier CF, Criner GJ, Martinez FJ, et al. . Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report: gold executive summary. Eur Respir J 2017;49:1700214 10.1183/13993003.00214-2017
    1. National Institute for Health and Care Excellence (NICE Chronic obstructive pulmonary disease in over 16s: diagnosis and management. NICE guideline [NG115]; 2018.
    1. Wedzicha JA, Wilkinson T. Impact of chronic obstructive pulmonary disease exacerbations on patients and payers. Proc Am Thorac Soc 2006;3:218–21. 10.1513/pats.200510-114SF
    1. Gayle A, Dickinson S, Morris K, et al. . What is the impact of GOLD 2017 recommendations in primary care? - a descriptive study of patient classifications, treatment burden and costs. Int J Chron Obstruct Pulmon Dis 2018;13:3485–92. 10.2147/COPD.S173664
    1. Hastie AT, Martinez FJ, Curtis JL, et al. . Association of sputum and blood eosinophil concentrations with clinical measures of COPD severity: an analysis of the SPIROMICS cohort. Lancet Respir Med 2017;5:956–67. 10.1016/S2213-2600(17)30432-0
    1. Wedzicha JA, Seemungal TAR. COPD exacerbations: defining their cause and prevention. Lancet 2007;370:786–96. 10.1016/S0140-6736(07)61382-8
    1. Seemungal TA, Donaldson GC, Paul EA, et al. . Effect of exacerbation on quality of life in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1998;157:1418–22. 10.1164/ajrccm.157.5.9709032
    1. Donaldson GC, Seemungal TAR, Bhowmik A, et al. . Relationship between exacerbation frequency and lung function decline in chronic obstructive pulmonary disease. Thorax 2002;57:847–52. 10.1136/thorax.57.10.847
    1. Hurst JR, Vestbo J, Anzueto A, et al. . Susceptibility to exacerbation in chronic obstructive pulmonary disease. N Engl J Med 2010;363:1128–38. 10.1056/NEJMoa0909883
    1. Donaldson GC, Hurst JR, Smith CJ, et al. . Increased risk of myocardial infarction and stroke following exacerbation of COPD. Chest 2010;137:1091–7. 10.1378/chest.09-2029
    1. Corlateanu A, Covantev S, Mathioudakis AG, et al. . Prevalence and burden of comorbidities in chronic obstructive pulmonary disease. Respir Investig 2016;54:387–96. 10.1016/j.resinv.2016.07.001
    1. Kunisaki KM, Dransfield MT, Anderson JA, et al. . Exacerbations of Chronic Obstructive Pulmonary Disease and Cardiac Events. A Post Hoc Cohort Analysis from the SUMMIT Randomized Clinical Trial. Am J Respir Crit Care Med 2018;198:51–7. 10.1164/rccm.201711-2239OC
    1. Rodriguez-Roisin R. Toward a consensus definition for COPD exacerbations. Chest 2000;117:398S–401. 10.1378/chest.117.5_suppl_2.398S
    1. Kim V, Aaron SD. What is a COPD exacerbation? current definitions, pitfalls, challenges and opportunities for improvement. Eur Respir J 2018;52:1801261 10.1183/13993003.01261-2018
    1. Bafadhel M, McKenna S, Terry S, et al. . Acute exacerbations of chronic obstructive pulmonary disease: identification of biologic clusters and their biomarkers. Am J Respir Crit Care Med 2011;184:662–71. 10.1164/rccm.201104-0597OC
    1. Mathioudakis AG, Chatzimavridou-Grigoriadou V, Corlateanu A, et al. . Procalcitonin to guide antibiotic administration in COPD exacerbations: a meta-analysis. Eur Respir Rev 2017;26:160073 10.1183/16000617.0073-2016
    1. Papi A, Bellettato CM, Braccioni F, et al. . Infections and airway inflammation in chronic obstructive pulmonary disease severe exacerbations. Am J Respir Crit Care Med 2006;173:1114–21. 10.1164/rccm.200506-859OC
    1. Beghé B, Verduri A, Roca M, et al. . Exacerbation of respiratory symptoms in COPD patients may not be exacerbations of COPD. Eur Respir J 2013;41:993–5. 10.1183/09031936.00180812
    1. Xu W, Collet J-P, Shapiro S, et al. . Negative impacts of unreported COPD exacerbations on health-related quality of life at 1 year. Eur Respir J 2010;35:1022–30. 10.1183/09031936.00079409
    1. Yang IA, Brown JL, George J, et al. . COPD-X Australian and New Zealand guidelines for the diagnosis and management of chronic obstructive pulmonary disease: 2017 update. Med J Aust 2017;207:436–42. 10.5694/mja17.00686
    1. Mathioudakis AG, Janner J, Moberg M, et al. . A systematic evaluation of the diagnostic criteria for COPD and exacerbations used in randomised controlled trials on the management of COPD exacerbations. ERJ Open Res 2019;5 10.1183/23120541.00136-2019. [Epub ahead of print: 15 Nov 2019].
    1. Mathioudakis AG, Moberg M, Janner J, et al. . Outcomes reported on the management of COPD exacerbations: a systematic survey of randomised controlled trials. ERJ Open Res 2019;5:00072-2019 10.1183/23120541.00072-2019
    1. Anthonisen NR, Manfreda J, Warren CP, et al. . Antibiotic therapy in exacerbations of chronic obstructive pulmonary disease. Ann Intern Med 1987;106:196–204. 10.7326/0003-4819-106-2-196
    1. Trappenburg JCA, van Deventer AC, Troosters T, et al. . The impact of using different symptom-based exacerbation algorithms in patients with COPD. Eur Respir J 2011;37:1260–8. 10.1183/09031936.00130910
    1. Leidy NK, Wilcox TK, Jones PW, et al. . Standardizing measurement of chronic obstructive pulmonary disease exacerbations. reliability and validity of a patient-reported diary. Am J Respir Crit Care Med 2011;183:323–9.
    1. Sleurs K, Seys SF, Bousquet J, et al. . Mobile health tools for the management of chronic respiratory diseases. Allergy 2019;74:1292–306. 10.1111/all.13720
    1. Mackay AJ, Donaldson GC, Patel ARC, et al. . Detection and severity grading of COPD exacerbations using the exacerbations of chronic pulmonary disease tool (exact). Eur Respir J 2014;43:735–44. 10.1183/09031936.00110913
    1. Biomarkers Definitions Working Group Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 2001;69:89–95. 10.1067/mcp.2001.113989
    1. Agusti A, Bel E, Thomas M, et al. . Treatable traits: toward precision medicine of chronic airway diseases. Eur Respir J 2016;47:410–9. 10.1183/13993003.01359-2015
    1. Lacoma A, Prat C, Andreo F, et al. . Biomarkers in the management of COPD. Eur Respir Rev 2009;18:96–104. 10.1183/09059180.00000609
    1. Patel ARC, Hurst JR, Wedzicha JA. The potential value of biomarkers in diagnosis and staging of COPD and exacerbations. Semin Respir Crit Care Med 2010;31:267–75. 10.1055/s-0030-1254067
    1. Keene JD, Jacobson S, Kechris K, et al. . Biomarkers predictive of exacerbations in the SPIROMICS and COPDGene cohorts. Am J Respir Crit Care Med 2017;195:473–81. 10.1164/rccm.201607-1330OC
    1. Donaldson GC, Wedzicha JA. Prediction of chronic obstructive pulmonary disease exacerbation frequency. clinical parameters are still better than biomarkers. Am J Respir Crit Care Med 2017;195:415–6. 10.1164/rccm.201610-2037ED
    1. Thomsen M, Ingebrigtsen TS, Marott JL, et al. . Inflammatory biomarkers and exacerbations in chronic obstructive pulmonary disease. JAMA 2013;309:2353–61. 10.1001/jama.2013.5732
    1. Wells JM, Washko GR, Han MK, et al. . Pulmonary arterial enlargement and acute exacerbations of COPD. N Engl J Med 2012;367:913–21. 10.1056/NEJMoa1203830
    1. Yamagami H, Tanaka A, Kishino Y, et al. . Association between respiratory impedance measured by forced oscillation technique and exacerbations in patients with COPD. Int J Chron Obstruct Pulmon Dis 2018;13:79–89. 10.2147/COPD.S146669
    1. Noell G, Cosío BG, Faner R, et al. . Multi-level differential network analysis of COPD exacerbations. Eur Respir J 2017;50:1700075 10.1183/13993003.00075-2017
    1. Sand JMB, Knox AJ, Lange P, et al. . Accelerated extracellular matrix turnover during exacerbations of COPD. Respir Res 2015;16:69 10.1186/s12931-015-0225-3
    1. Schumann DM, Leeming D, Papakonstantinou E, et al. . Collagen degradation and formation are elevated in exacerbated COPD compared with stable disease. Chest 2018;154:798–807. 10.1016/j.chest.2018.06.028
    1. Adamson PD, Anderson JA, Brook RD, et al. . Cardiac Troponin I and Cardiovascular Risk in Patients With Chronic Obstructive Pulmonary Disease. J Am Coll Cardiol 2018;72:1126–37. 10.1016/j.jacc.2018.06.051
    1. van Velzen P, Brinkman P, Knobel HH, et al. . Exhaled breath profiles before, during and after exacerbation of COPD: a prospective follow-up study. COPD 2019;16:330–7. 10.1080/15412555.2019.1669550
    1. Pizzini A, Filipiak W, Wille J, et al. . Analysis of volatile organic compounds in the breath of patients with stable or acute exacerbation of chronic obstructive pulmonary disease. J Breath Res 2018;12:036002 10.1088/1752-7163/aaa4c5
    1. Hartl S, Lopez-Campos JL, Pozo-Rodriguez F, et al. . Risk of death and readmission of hospital-admitted COPD exacerbations: European COPD audit. Eur Respir J 2016;47:113–21. 10.1183/13993003.01391-2014
    1. Steer J, Gibson J, Bourke SC. The DECAF score: predicting hospital mortality in exacerbations of chronic obstructive pulmonary disease. Thorax 2012;67:970–6. 10.1136/thoraxjnl-2012-202103
    1. Chang CL, Robinson SC, Mills GD, et al. . Biochemical markers of cardiac dysfunction predict mortality in acute exacerbations of COPD. Thorax 2011;66:764–8. 10.1136/thx.2010.155333
    1. Chaudary N, Geraci SA. Prognostic value of cardiac-specific troponins in chronic obstructive pulmonary disease exacerbations: a systematic review. J Miss State Med Assoc 2014;55:40–4.
    1. Patout M, Meira L, D'Cruz R, et al. . Neural respiratory drive predicts long-term outcome following admission for exacerbation of COPD: a post hoc analysis. Thorax 2019;74:910–3. 10.1136/thoraxjnl-2018-212074
    1. Murphy PB, Kumar A, Reilly C, et al. . Neural respiratory drive as a physiological biomarker to monitor change during acute exacerbations of COPD. Thorax 2011;66:602–8. 10.1136/thx.2010.151332
    1. Patel IS, Seemungal TAR, Wilks M, et al. . Relationship between bacterial colonisation and the frequency, character, and severity of COPD exacerbations. Thorax 2002;57:759–64. 10.1136/thorax.57.9.759
    1. Wilkinson TMA, Patel IS, Wilks M, et al. . Airway bacterial load and FEV1 decline in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2003;167:1090–5. 10.1164/rccm.200210-1179OC
    1. Hurst JR, Wilkinson TMA, Perera WR, et al. . Relationships among bacteria, upper airway, lower airway, and systemic inflammation in COPD. Chest 2005;127:1219–26. 10.1016/S0012-3692(15)34470-6
    1. Rosell A, Monsó E, Soler N, et al. . Microbiologic determinants of exacerbation in chronic obstructive pulmonary disease. Arch Intern Med 2005;165:891–7. 10.1001/archinte.165.8.891
    1. Kim VL, Coombs NA, Staples KJ, et al. . Impact and associations of eosinophilic inflammation in COPD: analysis of the AERIS cohort. Eur Respir J 2017;50:1700853 10.1183/13993003.00853-2017
    1. Sethi S, Sethi R, Eschberger K, et al. . Airway bacterial concentrations and exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2007;176:356–61. 10.1164/rccm.200703-417OC
    1. Sethi S, Evans N, Grant BJB, et al. . New strains of bacteria and exacerbations of chronic obstructive pulmonary disease. N Engl J Med 2002;347:465–71. 10.1056/NEJMoa012561
    1. Sethi S, Wrona C, Eschberger K, et al. . Inflammatory profile of new bacterial strain exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2008;177:491–7. 10.1164/rccm.200708-1234OC
    1. Chin CL, Manzel LJ, Lehman EE, et al. . Haemophilus influenzae from patients with chronic obstructive pulmonary disease exacerbation induce more inflammation than colonizers. Am J Respir Crit Care Med 2005;172:85–91. 10.1164/rccm.200412-1687OC
    1. Hilty M, Burke C, Pedro H, et al. . Disordered microbial communities in asthmatic airways. PLoS One 2010;5:e8578 10.1371/journal.pone.0008578
    1. Sze MA, Dimitriu PA, Hayashi S, et al. . The lung tissue microbiome in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2012;185:1073–80. 10.1164/rccm.201111-2075OC
    1. Pragman AA, Lyu T, Baller JA, et al. . The lung tissue microbiota of mild and moderate chronic obstructive pulmonary disease. Microbiome 2018;6:7 10.1186/s40168-017-0381-4
    1. Jubinville E, Veillette M, Milot J, et al. . Exacerbation induces a microbiota shift in sputa of COPD patients. PLoS One 2018;13:e0194355 10.1371/journal.pone.0194355
    1. Wang Z, Singh R, Miller BE, et al. . Sputum microbiome temporal variability and dysbiosis in chronic obstructive pulmonary disease exacerbations: an analysis of the COPDMAP study. Thorax 2018;73:331–8. 10.1136/thoraxjnl-2017-210741
    1. Mayhew D, Devos N, Lambert C, et al. . Longitudinal profiling of the lung microbiome in the AERIS study demonstrates repeatability of bacterial and eosinophilic COPD exacerbations. Thorax 2018;73:422–30. 10.1136/thoraxjnl-2017-210408
    1. Molyneaux PL, Mallia P, Cox MJ, et al. . Outgrowth of the bacterial airway microbiome after rhinovirus exacerbation of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2013;188:1224–31. 10.1164/rccm.201302-0341OC
    1. Mallia P, Footitt J, Sotero R, et al. . Rhinovirus infection induces degradation of antimicrobial peptides and secondary bacterial infection in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2012;186:1117–24. 10.1164/rccm.201205-0806OC
    1. George SN, Garcha DS, Mackay AJ, et al. . Human rhinovirus infection during naturally occurring COPD exacerbations. Eur Respir J 2014;44:87–96. 10.1183/09031936.00223113
    1. Singanayagam A, Glanville N, Girkin JL, et al. . Corticosteroid suppression of antiviral immunity increases bacterial loads and mucus production in COPD exacerbations. Nat Commun 2018;9:2229 10.1038/s41467-018-04574-1
    1. Roede BM, Bresser P, Prins JM, et al. . Reduced risk of next exacerbation and mortality associated with antibiotic use in COPD. Eur Respir J 2009;33:282–8. 10.1183/09031936.00088108
    1. Roede BM, Bindels PJ, Brouwer HJ, et al. . Antibiotics and steroids for exacerbations of COPD in primary care: compliance with Dutch guidelines. Br J Gen Pract 2006;56:662–5.
    1. Butler CC, Gillespie D, White P, et al. . C-Reactive protein testing to guide antibiotic prescribing for COPD exacerbations. N Engl J Med 2019;381:111–20. 10.1056/NEJMoa1803185
    1. Prins HJ, Duijkers R, van der Valk P, et al. . CRP-guided antibiotic treatment in acute exacerbations of COPD in hospital admissions. Eur Respir J 2019;53:1802014 10.1183/13993003.02014-2018
    1. Brendish NJ, Malachira AK, Armstrong L, et al. . Routine molecular point-of-care testing for respiratory viruses in adults presenting to hospital with acute respiratory illness (ResPOC): a pragmatic, open-label, randomised controlled trial. Lancet Respir Med 2017;5:401–11. 10.1016/S2213-2600(17)30120-0
    1. Stolz D, Hirsch HH, Schilter D, et al. . Intensified Therapy with Inhaled Corticosteroids and Long-Acting β2-Agonists at the Onset of Upper Respiratory Tract Infection to Prevent Chronic Obstructive Pulmonary Disease Exacerbations. A Multicenter, Randomized, Double-Blind, Placebo-controlled Trial. Am J Respir Crit Care Med 2018;197:1136–46. 10.1164/rccm.201709-1807OC
    1. Wilkinson TMA, Aris E, Bourne S, et al. . A prospective, observational cohort study of the seasonal dynamics of airway pathogens in the aetiology of exacerbations in COPD. Thorax 2017;72:919–27. 10.1136/thoraxjnl-2016-209023
    1. Seemungal T, Harper-Owen R, Bhowmik A, et al. . Respiratory viruses, symptoms, and inflammatory markers in acute exacerbations and stable chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2001;164:1618–23. 10.1164/ajrccm.164.9.2105011
    1. Footitt J, Mallia P, Durham AL, et al. . Oxidative and nitrosative stress and histone deacetylase-2 activity in exacerbations of COPD. Chest 2016;149:62–73. 10.1378/chest.14-2637
    1. Mallia P, Message SD, Kebadze T, et al. . An experimental model of rhinovirus induced chronic obstructive pulmonary disease exacerbations: a pilot study. Respir Res 2006;7:116 10.1186/1465-9921-7-116
    1. Kim H-C, Choi S-H, Huh J-W, et al. . Different pattern of viral infections and clinical outcomes in patient with acute exacerbation of chronic obstructive pulmonary disease and chronic obstructive pulmonary disease with pneumonia. J Med Virol 2016;88:2092–9. 10.1002/jmv.24577
    1. Dai M-Y, Qiao J-P, Xu Y-H, et al. . Respiratory infectious phenotypes in acute exacerbation of COPD: an aid to length of stay and COPD assessment test. Int J Chron Obstruct Pulmon Dis 2015;10:2257–63. 10.2147/COPD.S92160
    1. Kopsaftis Z, Wood-Baker R, Poole P. Influenza vaccine for chronic obstructive pulmonary disease (COPD). Cochrane Database Syst Rev 2018;6:CD002733 10.1002/14651858.CD002733.pub3
    1. Bekkat-Berkani R, Wilkinson T, Buchy P, et al. . Seasonal influenza vaccination in patients with COPD: a systematic literature review. BMC Pulm Med 2017;17:79 10.1186/s12890-017-0420-8
    1. Toniolo Neto J. Neuraminidase inhibitors for preventing and treating influenza in healthy adults and children. Sao Paulo Med J 2014;132:256–7. 10.1590/1516-3180.20141324t2
    1. Mazur NI, Martinón-Torres F, Baraldi E, et al. . Lower respiratory tract infection caused by respiratory syncytial virus: current management and new therapeutics. Lancet Respir Med 2015;3:888–900. 10.1016/S2213-2600(15)00255-6
    1. Quint JK, Donaldson GC, Goldring JJP, et al. . Serum IP-10 as a biomarker of human rhinovirus infection at exacerbation of COPD. Chest 2010;137:812–22. 10.1378/chest.09-1541
    1. Lee N, Chan PKS, Hui DSC, et al. . Viral loads and duration of viral shedding in adult patients hospitalized with influenza. J Infect Dis 2009;200:492–500. 10.1086/600383
    1. Fujimoto K, Yasuo M, Urushibata K, et al. . Airway inflammation during stable and acutely exacerbated chronic obstructive pulmonary disease. Eur Respir J 2005;25:640–6. 10.1183/09031936.05.00047504
    1. Singh D, Kolsum U, Brightling CE, et al. . Eosinophilic inflammation in COPD: prevalence and clinical characteristics. Eur Respir J 2014;44:1697–700. 10.1183/09031936.00162414
    1. Brightling CE, Monteiro W, Ward R, et al. . Sputum eosinophilia and short-term response to prednisolone in chronic obstructive pulmonary disease: a randomised controlled trial. Lancet 2000;356:1480–5. 10.1016/S0140-6736(00)02872-5
    1. Siva R, Green RH, Brightling CE, et al. . Eosinophilic airway inflammation and exacerbations of COPD: a randomised controlled trial. Eur Respir J 2007;29:906–13. 10.1183/09031936.00146306
    1. Bafadhel M, McKenna S, Terry S, et al. . Blood eosinophils to direct corticosteroid treatment of exacerbations of chronic obstructive pulmonary disease: a randomized placebo-controlled trial. Am J Respir Crit Care Med 2012;186:48–55. 10.1164/rccm.201108-1553OC
    1. Sivapalan P, Lapperre TS, Janner J, et al. . Eosinophil-guided corticosteroid therapy in patients admitted to hospital with COPD exacerbation (CORTICO-COP): a multicentre, randomised, controlled, open-label, non-inferiority trial. Lancet Respir Med 2019;7:699–709. 10.1016/S2213-2600(19)30176-6
    1. Couillard S, Larivée P, Courteau J, et al. . Eosinophils in COPD exacerbations are associated with increased readmissions. Chest 2017;151:366–73. 10.1016/j.chest.2016.10.003
    1. Vedel-Krogh S, Nielsen SF, Lange P, et al. . Blood eosinophils and exacerbations in chronic obstructive pulmonary disease. The Copenhagen general population study. Am J Respir Crit Care Med 2016;193:965–74. 10.1164/rccm.201509-1869OC
    1. Ernst P. Blood eosinophils in COPD and the future risk of pneumonia. Eur Respir J 2018;52:1800981 10.1183/13993003.00981-2018
    1. Watz H, Tetzlaff K, Wouters EFM, et al. . Blood eosinophil count and exacerbations in severe chronic obstructive pulmonary disease after withdrawal of inhaled corticosteroids: a post-hoc analysis of the wisdom trial. Lancet Respir Med 2016;4:390–8. 10.1016/S2213-2600(16)00100-4
    1. Bafadhel M, Greening NJ, Harvey-Dunstan TC, et al. . Blood eosinophils and outcomes in severe hospitalized exacerbations of COPD. Chest 2016;150:320–8. 10.1016/j.chest.2016.01.026
    1. Kolsum U, Donaldson GC, Singh R, et al. . Blood and sputum eosinophils in COPD; relationship with bacterial load. Respir Res 2017;18:88 10.1186/s12931-017-0570-5
    1. Long GH, Southworth T, Kolsum U, et al. . The stability of blood eosinophils in chronic obstructive pulmonary disease. Respir Res 2020;21:15 10.1186/s12931-020-1279-4
    1. Sivapalan P, Moberg M, Eklöf J, et al. . A multi-center randomized, controlled, open-label trial evaluating the effects of eosinophil-guided corticosteroid-sparing therapy in hospitalised patients with COPD exacerbations - the CORTICO steroid reduction in COPD (CORTICO-COP) study protocol. BMC Pulm Med 2017;17:114 10.1186/s12890-017-0458-7
    1. Bafadhel M, Davies L, Calverley PMA, et al. . Blood eosinophil guided prednisolone therapy for exacerbations of COPD: a further analysis. Eur Respir J 2014;44:789–91. 10.1183/09031936.00062614
    1. Yun JH, Lamb A, Chase R, et al. . Blood eosinophil count thresholds and exacerbations in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol 2018;141:e10:2037–47. 10.1016/j.jaci.2018.04.010
    1. Wedzicha JA, Calverley PMA, Albert RK, et al. . Prevention of COPD exacerbations: a European respiratory Society/American thoracic Society guideline. Eur Respir J 2017;50 10.1183/13993003.02265-2016. [Epub ahead of print: 09 Sep 2017].
    1. Martinez FJ, Vestbo J, Anderson JA, et al. . Effect of fluticasone furoate and vilanterol on exacerbations of chronic obstructive pulmonary disease in patients with moderate airflow obstruction. Am J Respir Crit Care Med 2017;195:881–8. 10.1164/rccm.201607-1421OC
    1. Vogelmeier CF, Chapman KR, Miravitlles M, et al. . Exacerbation heterogeneity in COPD: subgroup analyses from the FLAME study. Int J Chron Obstruct Pulmon Dis 2018;13:1125–34. 10.2147/COPD.S160011

Source: PubMed

3
Prenumerera