Quantitative longitudinal T2* mapping for assessing placental function and association with adverse pregnancy outcomes across gestation

Matthias C Schabel, Victoria H J Roberts, Karen J Gibbins, Monica Rincon, Jessica E Gaffney, Aaron D Streblow, Adam M Wright, Jamie O Lo, Byung Park, Christopher D Kroenke, Kathryn Szczotka, Nathan R Blue, Jessica M Page, Kathy Harvey, Michael W Varner, Robert M Silver, Antonio E Frias, Matthias C Schabel, Victoria H J Roberts, Karen J Gibbins, Monica Rincon, Jessica E Gaffney, Aaron D Streblow, Adam M Wright, Jamie O Lo, Byung Park, Christopher D Kroenke, Kathryn Szczotka, Nathan R Blue, Jessica M Page, Kathy Harvey, Michael W Varner, Robert M Silver, Antonio E Frias

Abstract

Existing methods for evaluating in vivo placental function fail to reliably detect pregnancies at-risk for adverse outcomes prior to maternal and/or fetal morbidity. Here we report the results of a prospective dual-site longitudinal clinical study of quantitative placental T2* as measured by blood oxygen-level dependent magnetic resonance imaging (BOLD-MRI). The objectives of this study were: 1) to quantify placental T2* at multiple time points across gestation, and its consistency across sites, and 2) to investigate the association between placental T2* and adverse outcomes. 797 successful imaging studies, at up to three time points between 11 and 38 weeks of gestation, were completed in 316 pregnancies. Outcomes were stratified into three groups: (UN) uncomplicated/normal pregnancy, (PA) primary adverse pregnancy, which included hypertensive disorders of pregnancy, birthweight <5th percentile, and/or stillbirth or fetal death, and (SA) secondary abnormal pregnancy, which included abnormal prenatal conditions not included in the PA group such as spontaneous preterm birth or fetal anomalies. Of the 316 pregnancies, 198 (62.6%) were UN, 70 (22.2%) PA, and 48 (15.2%) SA outcomes. We found that the evolution of placental T2* across gestation was well described by a sigmoid model, with T2* decreasing continuously from a high plateau level early in gestation, through an inflection point around 30 weeks, and finally approaching a second, lower plateau in late gestation. Model regression revealed significantly lower T2* in the PA group than in UN pregnancies starting at 15 weeks and continuing through 33 weeks. T2* percentiles were computed for individual scans relative to UN group regression, and z-scores and receiver operating characteristic (ROC) curves calculated for association of T2* with pregnancy outcome. Overall, differences between UN and PA groups were statistically significant across gestation, with large effect sizes in mid- and late- pregnancy. The area under the curve (AUC) for placental T2* percentile and PA pregnancy outcome was 0.71, with the strongest predictive power (AUC of 0.76) at the mid-gestation time period (20-30 weeks). Our data demonstrate that placental T2* measurements are strongly associated with pregnancy outcomes often attributed to placental insufficiency. Trial registration: ClinicalTrials.gov: NCT02749851.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Enrollment flow chart.
Fig 1. Enrollment flow chart.
Numbers detail prospective patients screened, consented, and enrolled at both study sites, along with completed MRI studies meeting quality criteria for inclusion in data analysis presented here. The majority of exclusions were due to lack of child care required to attend study visits, marijuana use and/or concomitant medical conditions.
Fig 2. Gestational dependence of placental T2*…
Fig 2. Gestational dependence of placental T2* values and rates of change.
Median T2* values for each completed study, computed over the entire placenta, are plotted as a function of gestational age at time of imaging in the three panels in the left column (panels A, B, C). Rates of change in placental T2* between repeated imaging time points within the same individual, where the x value is the mean gestational age of two sequential scans and the y value is the change in T2* between the same two sequential scans, are plotted as a function of mean gestational age in the right column (panels D, E, F). The upper row plots these quantities for normal pregnancies, the middle row for abnormal (green) and adverse (red) pregnancies, and the bottom row for normal pregnancies stratified by site (OHSU in blue, Utah in red). In all graphs, model regression curves (using the functions and parameters given in Table 4) are indicated by the thick solid lines, the 95% confidence intervals by the dashed lines, and the 95% prediction intervals by the dot-dashed lines. The best fit and 95% CI curves from the UN population are superimposed in gray on the PA/SA and site-specific plots in the second and third rows for reference.
Fig 3. Comparison of anatomic magnetic resonance…
Fig 3. Comparison of anatomic magnetic resonance imaging and placental T2* mapping in uncomplicated normal and primary adverse pregnancies.
T2-weighted HASTE MRI (left column) and placental T2* maps (right column) are shown for an uncomplicated normal pregnancy at 232 days gestation (top row, panels A & B) and for a primary adverse pregnancy at 235 days gestation presenting with severe preeclampsia (bottom row, panels C & D). The placenta is indicated by the dashed blue outlines overlaid on the T2* maps.
Fig 4. Histograms of T2* percentiles.
Fig 4. Histograms of T2* percentiles.
Bar charts showing histograms of measured T2* percentiles for uncomplicated normal (UN, blue), primary adverse (PA, red), and secondary abnormal (SA, green) pregnancies for both sites (left) and for OHSU (middle) and Utah (right) separately.
Fig 5. Receiver operator characteristic (ROC) curves…
Fig 5. Receiver operator characteristic (ROC) curves for T2* prediction of PA pregnancies.
The points where Youden’s J is maximized are indicated by the stars. Area under the curve (AUC), Jmax, and the corresponding optimal cutoff threshold in T2* percentile relative to UN (Copt) are given in the figure legend for each panel.

References

    1. Hennington BS, Alexander BT. Linking intrauterine growth restriction and blood pressure: insight into the human origins of cardiovascular disease. Circulation. 2013;128(20):2179–80. Epub 2013/10/19. doi: 10.1161/CIRCULATIONAHA.113.006323 .
    1. Jaddoe VW, de Jonge LL, Hofman A, Franco OH, Steegers EA, Gaillard R. First trimester fetal growth restriction and cardiovascular risk factors in school age children: population based cohort study. BMJ. 2014;348:g14. Epub 2014/01/25. doi: 10.1136/bmj.g14 .
    1. Kovo M, Schreiber L, Bar J. Placental vascular pathology as a mechanism of disease in pregnancy complications. Thromb Res. 2013;131 Suppl 1:S18–21. Epub 2013/03/15. doi: 10.1016/S0049-3848(13)70013-6 .
    1. Kovo M, Schreiber L, Ben-Haroush A, Gold E, Golan A, Bar J. The placental component in early-onset and late-onset preeclampsia in relation to fetal growth restriction. Prenat Diagn. 2012;32(7):632–7. Epub 2012/05/09. doi: 10.1002/pd.3872 .
    1. Paranjothy S, Dunstan F, Watkins WJ, Hyatt M, Demmler JC, Lyons RA, et al.. Gestational age, birth weight, and risk of respiratory hospital admission in childhood. Pediatrics. 2013;132(6):e1562–9. Epub 2013/11/20. doi: 10.1542/peds.2013-1737 .
    1. Sehgal A, Doctor T, Menahem S. Cardiac function and arterial biophysical properties in small for gestational age infants: postnatal manifestations of fetal programming. J Pediatr. 2013;163(5):1296–300. Epub 2013/07/31. doi: 10.1016/j.jpeds.2013.06.030 .
    1. Walker CK, Krakowiak P, Baker A, Hansen RL, Ozonoff S, Hertz-Picciotto I. Preeclampsia, placental insufficiency, and autism spectrum disorder or developmental delay. JAMA Pediatr. 2015;169(2):154–62. Epub 2014/12/09. doi: 10.1001/jamapediatrics.2014.2645 .
    1. Bar J, Schreiber L, Ben-Haroush A, Ahmed H, Golan A, Kovo M. The placental vascular component in early and late intrauterine fetal death. Thromb Res. 2012;130(6):901–5. Epub 2012/10/10. doi: 10.1016/j.thromres.2012.09.013 .
    1. Cruz-Lemini M, Crispi F, Van Mieghem T, Pedraza D, Cruz-Martinez R, Acosta-Rojas R, et al.. Risk of perinatal death in early-onset intrauterine growth restriction according to gestational age and cardiovascular Doppler indices: a multicenter study. Fetal Diagn Ther. 2012;32(1–2):116–22. Epub 2012/07/11. doi: 10.1159/000333001 .
    1. Dicke JM, Huettner P, Yan S, Odibo A, Kraus FT. Umbilical artery Doppler indices in small for gestational age fetuses: correlation with adverse outcomes and placental abnormalities. J Ultrasound Med. 2009;28(12):1603–10. Epub 2009/11/26. doi: 10.7863/jum.2009.28.12.1603 .
    1. Kidron D, Bernheim J, Aviram R. Placental findings contributing to fetal death, a study of 120 stillbirths between 23 and 40 weeks gestation. Placenta. 2009;30(8):700–4. Epub 2009/06/19. doi: 10.1016/j.placenta.2009.05.009 .
    1. Pare E, Parry S, McElrath TF, Pucci D, Newton A, Lim KH. Clinical risk factors for preeclampsia in the 21st century. Obstet Gynecol. 2014;124(4):763–70. Epub 2014/09/10. doi: 10.1097/AOG.0000000000000451 .
    1. Roberts DJ, Post MD. The placenta in pre-eclampsia and intrauterine growth restriction. J Clin Pathol. 2008;61(12):1254–60. Epub 2008/07/22. doi: 10.1136/jcp.2008.055236 .
    1. Salafia CM, Vintzileos AM, Silberman L, Bantham KF, Vogel CA. Placental pathology of idiopathic intrauterine growth retardation at term. Am J Perinatol. 1992;9(3):179–84. Epub 1992/05/01. doi: 10.1055/s-2007-999316 .
    1. Salafia CM, Vogel CA, Bantham KF, Vintzileos AM, Pezzullo J, Silberman L. Preterm delivery: correlations of fetal growth and placental pathology. Am J Perinatol. 1992;9(3):190–3. Epub 1992/05/01. doi: 10.1055/s-2007-999318 .
    1. Sibai B, Dekker G, Kupferminc M. Pre-eclampsia. Lancet. 2005;365(9461):785–99. Epub 2005/03/01. doi: 10.1016/S0140-6736(05)17987-2 .
    1. Stillbirth Collaborative Research Network Writing G. Association between stillbirth and risk factors known at pregnancy confirmation. JAMA. 2011;306(22):2469–79. Epub 2011/12/15. doi: 10.1001/jama.2011.1798 .
    1. Ozkaya U, Ozkan S, Ozeren S, Corakci A. Doppler examination of uteroplacental circulation in early pregnancy: can it predict adverse outcome? J Clin Ultrasound. 2007;35(7):382–6. Epub 2007/06/07. doi: 10.1002/jcu.20370 .
    1. Poon LC, Lesmes C, Gallo DM, Akolekar R, Nicolaides KH. Prediction of small-for-gestational-age neonates: screening by biophysical and biochemical markers at 19–24 weeks. Ultrasound Obstet Gynecol. 2015;46(4):437–45. Epub 2015/05/20. doi: 10.1002/uog.14904 .
    1. Su EJ. Role of the fetoplacental endothelium in fetal growth restriction with abnormal umbilical artery Doppler velocimetry. Am J Obstet Gynecol. 2015;213(4 Suppl):S123–30. Epub 2015/10/03. doi: 10.1016/j.ajog.2015.06.038 .
    1. Verlohren S, Melchiorre K, Khalil A, Thilaganathan B. Uterine artery Doppler, birth weight and timing of onset of pre-eclampsia: providing insights into the dual etiology of late-onset pre-eclampsia. Ultrasound Obstet Gynecol. 2014;44(3):293–8. Epub 2014/01/23. doi: 10.1002/uog.13310 .
    1. Zhong Y, Tuuli M, Odibo AO. First-trimester assessment of placenta function and the prediction of preeclampsia and intrauterine growth restriction. Prenat Diagn. 2010;30(4):293–308. Epub 2010/02/19. doi: 10.1002/pd.2475 .
    1. Tuuli MG, Odibo AO. The role of serum markers and uterine artery Doppler in identifying at-risk pregnancies. Clin Perinatol. 2011;38(1):1–19, v. Epub 2011/03/01. doi: 10.1016/j.clp.2010.12.007 .
    1. Mitra SC, Seshan SV, Riachi LE. Placental vessel morphometry in growth retardation and increased resistance of the umbilical artery Doppler flow. J Matern Fetal Med. 2000;9(5):282–6. Epub 2001/01/02. doi: 10.1002/1520-6661(200009/10)9:5&lt;282::AID-MFM5&gt;;2-J .
    1. O’Dwyer V, Burke G, Unterscheider J, Daly S, Geary MP, Kennelly MM, et al.. Defining the residual risk of adverse perinatal outcome in growth-restricted fetuses with normal umbilical artery blood flow. Am J Obstet Gynecol. 2014;211(4):420 e1–5. Epub 2014/07/30. doi: 10.1016/j.ajog.2014.07.033 .
    1. Unterscheider J, Daly S, Geary MP, Kennelly MM, McAuliffe FM, O’Donoghue K, et al.. Optimizing the definition of intrauterine growth restriction: the multicenter prospective PORTO Study. Am J Obstet Gynecol. 2013;208(4):290 e1–6. Epub 2013/03/28. doi: 10.1016/j.ajog.2013.02.007 .
    1. Guttmacher AE, Maddox YT, Spong CY. The Human Placenta Project: placental structure, development, and function in real time. Placenta. 2014;35(5):303–4. Epub 2014/03/26. doi: 10.1016/j.placenta.2014.02.012 .
    1. Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A. 1990;87(24):9868–72. Epub 1990/12/01. doi: 10.1073/pnas.87.24.9868 .
    1. Sorensen A, Peters D, Frund E, Lingman G, Christiansen O, Uldbjerg N. Changes in human placental oxygenation during maternal hyperoxia estimated by blood oxygen level-dependent magnetic resonance imaging (BOLD MRI). Ultrasound Obstet Gynecol. 2013;42(3):310–4. Epub 2013/01/11. doi: 10.1002/uog.12395 .
    1. Frias AE, Schabel MC, Roberts VH, Tudorica A, Grigsby PL, Oh KY, et al.. Using dynamic contrast-enhanced MRI to quantitatively characterize maternal vascular organization in the primate placenta. Magn Reson Med. 2015;73(4):1570–8. Epub 2014/04/23. doi: 10.1002/mrm.25264 .
    1. Schabel MC, Roberts VHJ, Lo JO, Platt S, Grant KA, Frias AE, et al.. Functional imaging of the nonhuman primate Placenta with endogenous blood oxygen level-dependent contrast. Magn Reson Med. 2016;76(5):1551–62. Epub 2015/11/26. doi: 10.1002/mrm.26052 .
    1. Anderson KB, Andersen AS, Hansen DN, Sinding M, Peters DA, Frokjaer JB, et al.. Placental transverse relaxation time (T2) estimated by MRI: Normal values and the correlation with birthweight. Acta Obstet Gynecol Scand. 2020. Epub 2020/12/02. doi: 10.1111/aogs.14057 .
    1. Hutter J, Slator PJ, Jackson L, Gomes ADS, Ho A, Story L, et al.. Multi-modal functional MRI to explore placental function over gestation. Magn Reson Med. 2019;81(2):1191–204. Epub 2018/09/23. doi: 10.1002/mrm.27447 .
    1. Melbourne A, Aughwane R, Sokolska M, Owen D, Kendall G, Flouri D, et al.. Separating fetal and maternal placenta circulations using multiparametric MRI. Magn Reson Med. 2019;81(1):350–61. Epub 2018/09/22. doi: 10.1002/mrm.27406 .
    1. Nye GA, Ingram E, Johnstone ED, Jensen OE, Schneider H, Lewis RM, et al.. Human placental oxygenation in late gestation: experimental and theoretical approaches. J Physiol. 2018;596(23):5523–34. Epub 2018/01/30. doi: 10.1113/JP275633 .
    1. Sinding M, Peters DA, Poulsen SS, Frokjaer JB, Christiansen OB, Petersen A, et al.. Placental baseline conditions modulate the hyperoxic BOLD-MRI response. Placenta. 2018;61:17–23. Epub 2017/12/27. doi: 10.1016/j.placenta.2017.11.002 .
    1. Schabel MC, Roberts VHJ, Rincon DM, Gaffney JE, Lo JO, Gibbins KJ, et al.. A Longitudinal Multisite Study of Endogenous BOLD MRI In Human Pregnancies. Magnetic Resonance in Medicine. 2019:1075.
    1. You W, Andescavage NN, Kapse K, Donofrio MT, Jacobs M, Limperopoulos C. Hemodynamic Responses of the Placenta and Brain to Maternal Hyperoxia in Fetuses with Congenital Heart Disease by Using Blood Oxygen-Level Dependent MRI. Radiology. 2020;294(1):141–8. Epub 2019/11/07. doi: 10.1148/radiol.2019190751 .
    1. Ingram E, Morris D, Naish J, Myers J, Johnstone E. MR Imaging Measurements of Altered Placental Oxygenation in Pregnancies Complicated by Fetal Growth Restriction. Radiology. 2017. Dec;285(3):953–960. doi: 10.1148/radiol.2017162385
    1. Andersen AS, Anderson KB, Hansen DN, Sinding M, Petersen AC, Peters DA, et al.. Placental MRI: Longitudinal relaxation time (T1) in appropriate and small for gestational age pregnancies. Placenta. 2021. Oct;114:76–82. doi: 10.1016/j.placenta.2021.08.057
    1. Anderson KB, Andersen AS, Hansen DN, Sinding M, Petersen AC, Peters DA, et al.. Placental transverse relaxation time (T2) estimated by MRI: Normal values and the correlation with birthweight. Acta Obstet Gynecol Scand. 2021. May;100(5):934–940. doi: 10.1111/aogs.14057
    1. Ho AEP, Hutter J, Jackson LH, Seed PT, Mccabe L, Al-Adnani M, et al.. T2* Placental Magnetic Resonance Imaging in Preterm Preeclampsia: An Observational Cohort Study. Hypertension. 2020. Jun;75(6):1523–1531. doi: 10.1161/HYPERTENSIONAHA.120.14701
    1. Lo JO, Roberts VHJ, Schabel MC, Wang X, Morgan TK, Liu Z, et al.. Novel Detection of Placental Insufficiency by Magnetic Resonance Imaging in the Nonhuman Primate. Reprod Sci. 2018;25(1):64–73. Epub 2017/03/24. doi: 10.1177/1933719117699704 .
    1. Lo JO, Schabel MC, Roberts VH, Wang X, Lewandowski KS, Grant KA, et al.. First trimester alcohol exposure alters placental perfusion and fetal oxygen availability affecting fetal growth and development in a non-human primate model. Am J Obstet Gynecol. 2017;216(3):302 e1–e8. Epub 2017/02/06. doi: 10.1016/j.ajog.2017.01.016 .
    1. Hirsch AJ, Roberts VHJ, Grigsby PL, Haese N, Schabel MC, Wang X, et al.. Zika virus infection in pregnant rhesus macaques causes placental dysfunction and immunopathology. Nat Commun. 2018;9(1):263. Epub 2018/01/19. doi: 10.1038/s41467-017-02499-9 .
    1. Nijman TA, van Vliet EO, Benders MJ, Mol BW, Franx A, Nikkels PG, et al.. Placental histology in spontaneous and indicated preterm birth: A case control study. Placenta, 2016;48:56–62. doi: 10.1016/j.placenta.2016.10.006
    1. Gestational Hypertension and Preeclampsia: ACOG Practice Bulletin, Number 222. Obstet Gynecol. 2020;135(6):e237–e60. Epub 2020/05/23. doi: 10.1097/AOG.0000000000003891 .
    1. Oken E, Kleinman KP, Rich-Edwards J, Gillman MW. A nearly continuous measure of birth weight for gestational age using a United States national reference. BMC Pediatr. 2003;3:6. doi: 10.1186/1471-2431-3-6
    1. Windsor JS, Rodway GW. Heights and haematology: the story of haemoglobin at altitude. Postgrad Med J. 2007;83(977):148–51. Epub 2007/03/09. doi: 10.1136/pgmj.2006.049734 .
    1. Andescavage N, duPlessis A, Metzler M, Bulas D, Vezina G, Jacobs M, et al.. In vivo assessment of placental and brain volumes in growth-restricted fetuses with and without fetal Doppler changes using quantitative 3D MRI. J Perinatol. 2017. Dec;37(12):1278–1284. doi: 10.1038/jp.2017.129 Epub 2017 Aug 24. .
    1. Derwig IE, Akolekar R, Zelaya FO, Gowland PA, Barker GJ, Nicolaides KH. Association of placental volume measured by MRI and birth weight percentile. J Magn Reson Imaging. 2011. Nov;34(5):1125–30. doi: 10.1002/jmri.22794 Epub 2011 Sep 16. .
    1. Gonzalez-Candia A, Herrera EA. High Altitude Pregnancies and Vascular Dysfunction: Observations From Latin American Studies. Front Physiol. 2021;12: 786038. doi: 10.3389/fphys.2021.786038 .
    1. Gassmann NN, van Elteren HA, Goos TG, Morales CR, Rivera-Ch M, Martin DS, et al.. Pregnancy at high altitude in the Andes leads to increased total vessel density in healthy newborns. J Appl Physiol (1985),2016;121(3): 709–715. doi: 10.1152/japplphysiol.00561.2016 .
    1. Herrera EA, Krause B, Ebensperger G, Reyes RV, Casanello P, Parra-Cordero M, et al.. The placental pursuit for an adequate oxidant balance between the mother and the fetus. Front Pharmacol. 2014; 5:149. doi: 10.3389/fphar.2014.00149 .
    1. Krampl E. Pregnancy at high altitude. Ultrasound Obstet Gynecol. 2002;19(6): 535–539. doi: 10.1046/j.1469-0705.2002.00738.x
    1. Gibbins KJ, Pinar H, Reddy UM, Saade GR, Goldenberg RL, Dudley DJ, et al.. Findings in Stillbirths Associated with Placental Disease. Am J Perinatol. 2020;37(7):708–15. Epub 2019/05/16. doi: 10.1055/s-0039-1688472 .
    1. Spinillo A, Gardella B, Bariselli S, Alfei A, Silini E, Dal Bello B. Placental histopathological correlates of umbilical artery Doppler velocimetry in pregnancies complicated by fetal growth restriction. Prenat Diagn. 2012;32(13):1263–72. Epub 2012/10/26. doi: 10.1002/pd.3988 .
    1. Goldenberg RL, Culhane JF, Iams JD, Romero R. Epidemiology and causes of preterm birth. Lancet. 2008. 5;371(9606):75–84. doi: 10.1016/S0140-6736(08)60074-4
    1. McHugh A, El-Khuffash A, Bussmann N, Doherty A, Franklin O, Breathnach F. Hyperoxygenation in pregnancy exerts a more profound effect on cardiovascular hemodynamics than is observed in the nonpregnant state. Am J Obstet Gynecol. 2019;220(4):397 e1–e8. Epub 2019/03/09. doi: 10.1016/j.ajog.2019.02.059 .
    1. Rasanen J, Huhta JC, Weiner S, Wood DC, Ludomirski A. Fetal branch pulmonary arterial vascular impedance during the second half of pregnancy. Am J Obstet Gynecol. 1996;174(5):1441–9. Epub 1996/05/01. doi: 10.1016/s0002-9378(96)70586-0 .
    1. Rasanen J, Wood DC, Debbs RH, Cohen J, Weiner S, Huhta JC. Reactivity of the human fetal pulmonary circulation to maternal hyperoxygenation increases during the second half of pregnancy: a randomized study. Circulation. 1998;97(3):257–62. Epub 1998/02/14. doi: 10.1161/01.cir.97.3.257 .

Source: PubMed

3
Prenumerera