The Effectiveness of Virtual Reality Exercise on Individual's Physiological, Psychological and Rehabilitative Outcomes: A Systematic Review

Jiali Qian, Daniel J McDonough, Zan Gao, Jiali Qian, Daniel J McDonough, Zan Gao

Abstract

Objective purpose: This review synthesized the literature examining the effects of virtual reality (VR)-based exercise on physiological, psychological, and rehabilitative outcomes in various populations. Design: A systematic review. Data sources: 246 articles were retrieved using key words, such as "VR", "exercise intervention", "physiological", "psychology", and "rehabilitation" through nine databases including Academic Search Premier and PubMed. Eligibility criteria for selecting studies: 15 articles which met the following criteria were included in the review: (1) peer-reviewed; (2) published in English; (3) randomized controlled trials (RCTs), controlled trials or causal-comparative design; (4) interventions using VR devices; and (5) examined effects on physiological, psychological, and/or rehabilitative outcomes. Descriptive and thematic analyses were used. Results: Of the 12 articles examining physiological outcomes, eight showed a positive effect on physical fitness, muscle strength, balance, and extremity function. Only four articles examined the effects on psychological outcomes, three showed positive effects such that VR exercise could ease fatigue, tension, and depression and induce calmness and enhance quality of life. Nine articles investigated the effects of VR-based exercise on rehabilitative outcomes with physiological and/or psychological outcomes, and six observed significant positive changes. In detail, patients who suffered from chronic stroke, hemodialysis, spinal-cord injury, cerebral palsy in early ages, and cognitive decline usually saw better improvements using VR-based exercise. Conclusion: The findings suggest that VR exercise has the potential to exert a positive impact on individual's physiological, psychological, and rehabilitative outcomes compared with traditional exercise. However, the quality, quantity, and sample size of existing studies are far from ideal. Therefore, more rigorous studies are needed to confirm the observed positive effects.

Keywords: health promotion; immersive virtual reality; interactive virtual reality; non-immersive virtual reality; physical activity.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flow diagram of studies through the review process. Note. * reasons for exclusions included ineligible age, ineligible exposure, ineligible analysis; ** reasons for exclusions included ineligible outcomes and lack of means/standard deviations.

References

    1. Chou C.-H., Hwang C.-L., Wu Y.-T. Effect of Exercise on Physical Function, Daily Living Activities, and Quality of Life in the Frail Older Adults: A Meta-Analysis. Arch. Phys. Med. Rehabil. 2012;93:237–244. doi: 10.1016/j.apmr.2011.08.042.
    1. Byrne A., Byrne D. The effect of exercise on depression, anxiety and other mood states: A review. J. Psychosom. Res. 1993;37:565–574. doi: 10.1016/0022-3999(93)90050-P.
    1. Zhu W. If you are physically fit, you will live a longer and healthier life: An interview with Dr. Steven N. Blair. J. Sport Health Sci. 2019;8:524–526. doi: 10.1016/j.jshs.2019.09.006.
    1. WHO Fact Sheet on Physical Activity. [(accessed on 23 February 2018)];2018 Available online: .
    1. Ahn S.J., Fox J. Immersive Virtual Environments, Avatars, and Agents for Health. Oxf. Res. Encycl. Commun. 2017 doi: 10.1093/acrefore/9780190228613.013.325.
    1. Mestre D., Dagonneau V., Mercier C.-S. Does Virtual Reality Enhance Exercise Performance, Enjoyment, and Dissociation? An Exploratory Study on a Stationary Bike Apparatus. Presence Teleoper. Virtual Environ. 2011;20:1–14. doi: 10.1162/pres_a_00031.
    1. Plante T.G., Aldridge A., Bogden R., Hanelin C. Might virtual reality promote the mood benefits of exercise? Comput. Hum. Behav. 2003;19:495–509. doi: 10.1016/S0747-5632(02)00074-2.
    1. Pasco D. The Potential of Using Virtual Reality Technology in Physical Activity Settings. Quest. 2013;65:429–441. doi: 10.1080/00336297.2013.795906.
    1. Zeng N., Pope Z.C., Lee J.E., Gao Z. Virtual Reality Exercise for Anxiety and Depression: A Preliminary Review of Current Research in an Emerging Field. J. Clin. Med. 2018;7:42. doi: 10.3390/jcm7030042.
    1. Gao Z., Zeng N., Pope Z.C., Wang R., Yu F. Effects of exergaming on motor skill competence, perceived competence, and physical activity in preschool children. J. Sport Health Sci. 2019;8:106–113. doi: 10.1016/j.jshs.2018.12.001.
    1. Vieira G.D.P., De Araujo D.F.G.H., Leite M.A.A., Orsini M., Correa C.L. Realidade virtual na reabilitação física de pacientes com doença de Parkinson. J. Hum. Growth Dev. 2014;24:31. doi: 10.7322/jhgd.72046.
    1. Imam B., Jarus T. Virtual Reality Rehabilitation from Social Cognitive and Motor Learning Theoretical Perspectives in Stroke Population. Rehabil. Res. Pr. 2014;2014:1–11. doi: 10.1155/2014/594540.
    1. Juras G., Brachman A., Michalska J., Kamieniarz A., Pawłowski M., Hadamus A., Białoszewski D., Błaszczyk J., Słomka K.J. Standards of Virtual Reality Application in Balance Training Programs in Clinical Practice: A Systematic Review. Games Health J. 2019;8:101–111. doi: 10.1089/g4h.2018.0034.
    1. Valmaggia L., Latif L., Kempton M.J., Rus-Calafell M., Kemptom M.J., Maria R.-C. Virtual reality in the psychological treatment for mental health problems: An systematic review of recent evidence. Psychiatry Res. Neuroimaging. 2016;236:189–195. doi: 10.1016/j.psychres.2016.01.015.
    1. Zeng N., Pope Z., Lee J.E., Gao Z. A systematic review of active video games on rehabilitative outcomes among older patients. J. Sport Health Sci. 2017;6:33–43. doi: 10.1016/j.jshs.2016.12.002.
    1. Li Z., Han X.-G., Sheng J., Ma S.-J. Virtual reality for improving balance in patients after stroke: A systematic review and meta-analysis. Clin. Rehabil. 2015;30:432–440. doi: 10.1177/0269215515593611.
    1. Moher D., Shamseer L., Clarke M., Ghersi D., Liberati A., Petticrew M., Shekelle P.G., Stewart L.A. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015;4:1. doi: 10.1186/2046-4053-4-1.
    1. Zeng N., Pope Z., Gao Z. Acute Effect of Virtual Reality Exercise Bike Games on College Students’ Physiological and Psychological Outcomes. Cyberpsychol. Behav. Soc. Netw. 2017;20:453–457. doi: 10.1089/cyber.2017.0042.
    1. Gao Z., Podlog L. Urban Latino Children’s Physical Activity Levels and Performance in Interactive Dance Video Games. Arch. Pediatr. Adolesc. Med. 2012;166:933. doi: 10.1001/archpediatrics.2012.649.
    1. Gao Z. Motivated but Not Active: The Dilemmas of Incorporating Interactive Dance into Gym Class. J. Phys. Act. Health. 2012;9:794–800. doi: 10.1123/jpah.9.6.794.
    1. Lee S.H., Lee J.-Y., Kim M.-Y., Jeon Y.-J., Kim S., Shin J.-H. Virtual Reality Rehabilitation With Functional Electrical Stimulation Improves Upper Extremity Function in Patients With Chronic Stroke: A Pilot Randomized Controlled Study. Arch. Phys. Med. Rehabil. 2018;99:1447–1453. doi: 10.1016/j.apmr.2018.01.030.
    1. Ribeiro S.O., De Sousa V.P.S., Viana E.D.S.R. Influence of a virtual reality-based exercise protocol on the sit-to-stand activity kinematic variables in pregnant women: A randomized controlled trial. Mot. Rev. Educ. Física. 2017;23:1–8. doi: 10.1590/s1980-6574201700030007.
    1. Chen C.-H., Jeng M.-C., Fung C.-P., Doong J.-L., Chuang T.-Y. Psychological benefits of virtual reality for patients in rehabilitation therapy. J. Sport Rehabil. 2009;18:258–268. doi: 10.1123/jsr.18.2.258.
    1. Cho H., Sohng K.-Y. The Effect of a Virtual Reality Exercise Program on Physical Fitness, Body Composition, and Fatigue in Hemodialysis Patients. J. Phys. Sci. 2014;26:1661–1665. doi: 10.1589/jpts.26.1661.
    1. Lee Y., Choi W., Lee K., Song C., Lee S. Virtual Reality Training With Three-Dimensional Video Games Improves Postural Balance and Lower Extremity Strength in Community-Dwelling Older Adults. J. Aging Phys. Act. 2017;25:621–627. doi: 10.1123/japa.2015-0271.
    1. Lotan M., Yalon-Chamovitz S., Weiss P.L. (Tamar) Virtual reality as means to improve physical fitness of individuals at a severe level of intellectual and developmental disability. Res. Dev. Disabil. 2010;31:869–874. doi: 10.1016/j.ridd.2010.01.010.
    1. Cho G.H., Hwangbo G., Shin H.S. The Effects of Virtual Reality-based Balance Training on Balance of the Elderly. J. Phys. Sci. 2014;26:615–617. doi: 10.1589/jpts.26.615.
    1. Mills R., Levac D., Sveistrup H. The Effects of a 5-Day Virtual-Reality Based Exercise Program on Kinematics and Postural Muscle Activity in Youth with Cerebral Palsy. Phys. Occup. Pediatr. 2018;39:388–403. doi: 10.1080/01942638.2018.1505801.
    1. Neumann M.M., Moffitt R.L. Affective and Attentional States When Running in a Virtual Reality Environment. Sports. 2018;6:71. doi: 10.3390/sports6030071.
    1. Saposnik G., Cohen L.G., Mamdani M., Pooyania S., Ploughman M., Cheung D., Shaw J., Hall J., Nord P., Dukelow S., et al. Efficacy and safety of non-immersive virtual reality exercising in stroke rehabilitation (EVREST): A randomised, multicentre, single-blind, controlled trial. Lancet Neurol. 2016;15:1019–1027. doi: 10.1016/S1474-4422(16)30121-1.
    1. Meyns P., Pans L., Plasmans K., Heyrman L., Desloovere K., Molenaers G. The Effect of Additional Virtual Reality Training on Balance in Children with Cerebral Palsy after Lower Limb Surgery: A Feasibility Study. Games Health J. 2017;6:39–48. doi: 10.1089/g4h.2016.0069.
    1. Lee G.-H. Effects of Virtual Reality Exercise Program on Balance in Multiple Sclerosis Patients. J. Korean Phys. 2015;27:61–67. doi: 10.18857/jkpt.2015.27.1.61.
    1. Park J., Lee D., Lee S. Effect of Virtual Reality Exercise Using the Nintendo Wii Fit on Muscle Activities of the Trunk and Lower Extremities of Normal Adults. J. Phys. Sci. 2014;26:271–273. doi: 10.1589/jpts.26.271.
    1. Segura-Ortí E., García-Testal A. Intradialytic virtual reality exercise: Increasing physical activity through technology. Semin. Dial. 2019;32:331–335. doi: 10.1111/sdi.12788.
    1. Luan X., Tian X., Zhang H., Huang R., Li N., Chen P., Wang R. Exercise as a prescription for patients with various diseases. J. Sport Health Sci. 2019;8:422–441. doi: 10.1016/j.jshs.2019.04.002.
    1. Schultz A.B., Alexander N.B., Ashton-Miller J.A. Biomechanical analyses of rising from a chair. J. Biomech. 1992;25:1383–1391. doi: 10.1016/0021-9290(92)90052-3.
    1. Gazaneo M.M., de Oliveira L.F. Alterações posturais Durante a Gestação. Rev. Bras. Ativ. Fís. Saúde. 1998;3:13–21.
    1. Ribas E., Guirro S. Analysis of plantar pressure and postural balance during different phases of pregnancy. Rev. Bras. Fisioter. 2007;35:3–8.
    1. Ramsey V.K., A Miszko T., Horvat M. Muscle activation and force production in Parkinson’s patients during sit to stand transfers. Clin. Biomech. 2004;19:377–384. doi: 10.1016/j.clinbiomech.2003.08.004.
    1. Mathiyakom W., McNitt-Gray J., Requejo P., Costa K. Modifying center of mass trajectory during sit-to-stand tasks redistributes the mechanical demand across the lower extremity joints. Clin. Biomech. 2005;20:105–111. doi: 10.1016/j.clinbiomech.2004.08.005.
    1. Laver K.E., Lang E.B., George S., Deutsch J.E., Saposnik G., Crotty M. Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev. 2017;11:CD008349. doi: 10.1002/14651858.CD008349.pub4.
    1. Holden M.K., Dyar T. Virtual Environment Training: A new tool for neurorehabilitation. Neurol. Rep. 2002;26:62–71. doi: 10.1097/01253086-200226020-00003.
    1. Cowan R.L., Frederick B.D., Rainey M., Levin J.M., Maas L.C., Bang J., Hennen J., E Lukas S., Renshaw P.F. Sex differences in response to red and blue light in human primary visual cortex: A bold fMRI study. Psychiatry Res. Neuroimaging. 2000;100:129–138. doi: 10.1016/S0925-4927(00)00074-3.
    1. Ruuskanen J.M., Parkatti T. Physical Activity and Related Factors Among Nursing Home Residents. J. Am. Geriatr. Soc. 1994;42:987–991. doi: 10.1111/j.1532-5415.1994.tb06593.x.
    1. Temple V.A. Barriers, enjoyment, and preference for physical activity among adults with intellectual disability. Int. J. Rehabil. Res. 2007;30:281–287. doi: 10.1097/MRR.0b013e3282f144fb.
    1. Morina N., Ijntema H., Meyerbröker K., Emmelkamp P.M. Can virtual reality exposure therapy gains be generalized to real-life? A meta-analysis of studies applying behavioral assessments. Behav. Res. 2015;74:18–24. doi: 10.1016/j.brat.2015.08.010.
    1. Farren G.L., Zhang T., Gu X., Thomas K.T. Sedentary behavior and physical activity predicting depressive symptoms in adolescents beyond attributes of health-related physical fitness. J. Sport Health Sci. 2018;7:489–496. doi: 10.1016/j.jshs.2017.03.008.
    1. Liu W., Zeng N., Pope Z.C., McDonough D.J., Gao Z. Acute Effects of Immersive Virtual Reality Exercise on Young Adults’ Situational Motivation. J. Clin. Med. 2019;8:1947. doi: 10.3390/jcm8111947.

Source: PubMed

3
Prenumerera