Bioelectrical impedance analysis of body composition for the anesthetic induction dose of propofol in older patients

Ana M Araújo, Humberto S Machado, Amílcar C Falcão, Patrício Soares-da-Silva, Ana M Araújo, Humberto S Machado, Amílcar C Falcão, Patrício Soares-da-Silva

Abstract

Background: Older people are currently the fastest growing segment of the worldwide population. The present study aimed to estimate propofol dose in older patients based on size descriptors measured by bioelectrical impedance analysis (BIA).

Methods: A cross sectional study in adult and older patients with body mass index equal to or lower than 35 kg/m2 was carried out. BIA and Clinical Frail Scale scoring were performed during pre-operative evaluation. Propofol infusion was started at 2000 mg/h until loss of consciousness (LOC) which was defined by "loss of eye-lash reflex" and "loss of response to name calling". Total dose of propofol at LOC was recorded. Propofol plasma concentration was measured using gas chromatography/ion trap-mass spectrometry.

Results: Forty patients were enrolled in the study. Total propofol dose required to LOC was lower in Age ≥ 65 group and a higher plasma propofol concentration was measured in this group. 60% of old patients were classified as "apparently vulnerable" or "frail" and narrow phase angle values were associated with increasing vulnerability scores. In the Age ≥ 65 group, the correlation analysis showed that the relationship between propofol dose and total body weight (TBW) scaled by the corresponding phase angle value is stronger than the correlation between propofol dose and TBW or fat free mass (FFM).

Conclusions: This study demonstrates that weight-based reduction of propofol is suitable in older patients; however FFM was not seen to be more effective than TBW to predict the propofol induction dose in these patients. Guiding propofol induction dose according to baseline frailty score should also be considered to estimate individualized dosage profiles. Determination of phase angle value appears to be an easy and reliable tool to assess frailty in older patients.

Trial registration: ClinicalTrials.gov Identifier: NCT02713698 . Registered on 23 February 2016.

Keywords: Frailty; Older patients; Phase angle; Propofol induction dose.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Bland–Altman plots - Janmahasatian formula vs. body impedance analysis in Age a) and Age ≥ 65 group (b). The 95% limits of agreement are shown as dashed lines. BMI | Body mass index (kg/m2)
Fig. 2
Fig. 2
Phase angle reference values. a, b and c represent the distribution of phase angle values according to age, BMI and sex. Vertical dashed lines represent lower phase angle reference value in healthy adult population. d shows the distribution of the standardized phase angle, z score, [z score = (observed phase angle-mean reference phase angle)/SD reference phase angle] for specific age, sex and BMI categories. BMI | Body mass index (kg/m2). F | Female. M | Male. SD | Standard deviation
Fig. 3
Fig. 3
Standardized phase angle (z-score) and clinical frail scale scores for each patient. CFS | Clinical frail scale
Fig. 4
Fig. 4
Propofol dose at LOC. a, b and c show, respectively, the correlations of propofol induction dose with TBW, FFM and TBW•phase angle of Age < 65 group. d, e and f illustrate, respectively, the correlations of propofol induction dose with TBW, FFM and TBW•phase angle of Age ≥ 65 group. Grey line in a and d represents the function equivalent to the standard adult and older propofol dose (2 mg•TBW in a and 1mg•TBW in d), respectively. BMI | Body mass index. FFM | Fat free mass. LOC | Loss of consciousness. TBW | Total body weight

References

    1. Griffiths R, Beech F, Brown A, Dhesi J, Foo I, Goodall J, Harrop-Griffiths W, Jameson J, Love N, Pappenheim K, et al. Peri-operative care of the elderly 2014: Association of Anaesthetists of Great Britain and Ireland. Anaesthesia. 2014;69(Suppl 1):81–98.
    1. Amrock LG, Deiner S. The implication of frailty on preoperative risk assessment. Curr Opin Anaesthesiol. 2014;27(3):330–335. doi: 10.1097/ACO.0000000000000065.
    1. McLachlan AJ, Bath S, Naganathan V, Hilmer SN, Le Couteur DG, Gibson SJ, Blyth FM. Clinical pharmacology of analgesic medicines in older people: impact of frailty and cognitive impairment. Br J Clin Pharmacol. 2011;71(3):351–364. doi: 10.1111/j.1365-2125.2010.03847.x.
    1. Rivera R, Antognini JF. Perioperative drug therapy in elderly patients. Anesthesiology. 2009;110(5):1176–1181. doi: 10.1097/ALN.0b013e3181a10207.
    1. Akhtar S, Ramani R. Geriatric pharmacology. Anesthesiol Clin. 2015;33(3):457–469. doi: 10.1016/j.anclin.2015.05.004.
    1. Klotz U. Pharmacokinetics and drug metabolism in the elderly. Drug Metab Rev. 2009;41(2):67–76. doi: 10.1080/03602530902722679.
    1. Phillips AT, Deiner S, Mo Lin H, Andreopoulos E, Silverstein J, Levin MA. Propofol use in the elderly population: prevalence of overdose and association with 30-day mortality. Clin Ther. 2015;37(12):2676–2685. doi: 10.1016/j.clinthera.2015.10.005.
    1. Ingrande J, Brodsky JB, Lemmens HJM. Lean body weight scalar for the anesthetic induction dose of propofol in morbidly obese subjects. Anesth Analg. 2011;113(1):57–62. doi: 10.1213/ANE.0b013e3181f6d9c0.
    1. Mitchell SJ, Kirkpatrick CM, Le Couteur DG, Naganathan V, Sambrook PN, Seibel MJ, Blyth FM, Waite LM, Handelsman DJ, Cumming RG, et al. Estimation of lean body weight in older community-dwelling men. Br J Clin Pharmacol. 2010;69(2):118–127. doi: 10.1111/j.1365-2125.2009.03586.x.
    1. Gupta D, Lammersfeld CA, Vashi PG, King J, Dahlk SL, Grutsch JF, Lis CG. Bioelectrical impedance phase angle as a prognostic indicator in breast cancer. BMC Cancer. 2008;8:249. doi: 10.1186/1471-2407-8-249.
    1. Barbosa-Silva MC, Barros AJ. Bioelectrical impedance analysis in clinical practice: a new perspective on its use beyond body composition equations. Curr Opin Clin Nutr Metab Care. 2005;8(3):311–317. doi: 10.1097/01.mco.0000165011.69943.39.
    1. Mullie L, Obrand A, Bendayan M, Trnkus A, Ouimet M-C, Moss E, Chen-Tournoux A, Rudski LG, Afilalo J. Phase angle as a biomarker for frailty and postoperative mortality: the BICS study. J Am Heart Assoc. 2018;7(17):e008721. doi: 10.1161/JAHA.118.008721.
    1. Stapel SN, Looijaard WGPM, Dekker IM, Girbes ARJ, Weijs PJM, Oudemans-van Straaten HM. Bioelectrical impedance analysis-derived phase angle at admission as a predictor of 90-day mortality in intensive care patients. Eur J Clin Nutr. 2018;72(7):1019–1025. doi: 10.1038/s41430-018-0167-1.
    1. Goswami PN, Munna K, Moinuddin . Bioelectrical impedance analysis: phase angle - an independent predictive health marker and its clinical applications. Berlin, Heidelberg: Springer Berlin Heidelberg; 2007. pp. 321–324.
    1. Wilhelm-Leen ER, Hall YN, Horwitz RI, Chertow GM. Phase angle, frailty and mortality in older adults. J Gen Intern Med. 2014;29(1):147–154. doi: 10.1007/s11606-013-2585-z.
    1. Araujo AM, Machado HS, Falcao AC, Soares-da-Silva P. Reliability of body-weight scalars on the assessment of propofol induction dose in obese patients. Acta Anaesthesiol Scand. 2018;62(4):464–473. doi: 10.1111/aas.13039.
    1. BCM - Body Composition Monitor. . Accessed Sept 2017.
    1. Bosy-Westphal A, Danielzik S, Dorhofer RP, Later W, Wiese S, Muller MJ. Phase angle from bioelectrical impedance analysis: population reference values by age, sex, and body mass index. JPEN J Parenter Enteral Nutr. 2006;30(4):309–316. doi: 10.1177/0148607106030004309.
    1. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gomez JM, Heitmann BL, Kent-Smith L, Melchior JC, Pirlich M, et al. Bioelectrical impedance analysis--part I: review of principles and methods. Clin Nutr. 2004;23(5):1226–1243. doi: 10.1016/j.clnu.2004.06.004.
    1. Kyle UG, Genton L, Karsegard L, Slosman DO, Pichard C. Single prediction equation for bioelectrical impedance analysis in adults aged 20--94 years. Nutrition. 2001;17(3):248–253. doi: 10.1016/S0899-9007(00)00553-0.
    1. Roubenoff R, Baumgartner RN, Harris TB, Dallal GE, Hannan MT, Economos CD, Stauber PM, Wilson PW, Kiel DP. Application of bioelectrical impedance analysis to elderly populations. J Gerontol A Biol Sci Med Sci. 1997;52(3):M129–M136. doi: 10.1093/gerona/52A.3.M129.
    1. Rockwood K, Song X, MacKnight C, Bergman H, Hogan DB, McDowell I, Mitnitski A. A global clinical measure of fitness and frailty in elderly people. CMAJ. 2005;173(5):489–495. doi: 10.1503/cmaj.050051.
    1. Minto CF, Schnider TW, Shafer SL. Pharmacokinetics and pharmacodynamics of remifentanil. II. Model application. Anesthesiology. 1997;86(1):24–33. doi: 10.1097/00000542-199701000-00005.
    1. Campos SMJ, Antunes L, Branco PS, Ferreira LM, Pinho PG. Simultaneous quantification of propofol and its non-conjugated metabolites in several biological matrices using gas chromatography/ion trap – mass spectrometry method. J Anal Bioanal Tech. 2014;5(3):195.
    1. Janmahasatian S, Duffull SB, Ash S, Ward LC, Byrne NM, Green B. Quantification of lean bodyweight. Clin Pharmacokinet. 2005;44(10):1051–1065. doi: 10.2165/00003088-200544100-00004.
    1. Iannuzzi M, Iannuzzi E, Rossi F, Berrino L, Chiefari M. Relationship between bispectral index, electroencephalographic state entropy and effect-site EC50 for propofol at different clinical endpoints. Br J Anaesth. 2005;94(4):492–495. doi: 10.1093/bja/aei075.
    1. Kazama T, Ikeda K, Morita K, Kikura M, Ikeda T, Kurita T, Sato S. Investigation of effective anesthesia induction doses using a wide range of infusion rates with undiluted and diluted propofol. Anesthesiology. 2000;92(4):1017–1028. doi: 10.1097/00000542-200004000-00019.
    1. Doufas AG, Bakhshandeh M, Bjorksten AR, Shafer SL, Sessler DI. Induction speed is not a determinant of propofol pharmacodynamics. Anesthesiology. 2004;101(5):1112–1121. doi: 10.1097/00000542-200411000-00010.
    1. Struys M, Versichelen L, Thas O, Herregods L, Rolly G. Comparison of computer-controlled administration of propofol with two manually controlled infusion techniques. Anaesthesia. 1997;52(1):41–50. doi: 10.1111/j.1365-2044.1997.002-az001.x.
    1. Chan VW, Chung FF. Propofol infusion for induction and maintenance of anesthesia in elderly patients: recovery and hemodynamic profiles. J Clin Anesth. 1996;8(4):317–323. doi: 10.1016/0952-8180(96)00041-4.
    1. Rather ZM, Rather MN, Afaq B, Farooq U, Ara Majid N. The effect of propofol when injected at different speeds for induction of general anesthesia: an observational study. Int J Clin Trials. 2018;5(2):7
    1. Peacock JE, Lewis RP, Reilly CS, Nimmo WS. Effect of different rates of infusion of propofol for induction of anaesthesia in elderly patients. Br J Anaesth. 1990;65(3):346–352. doi: 10.1093/bja/65.3.346.
    1. Hardman JG, Hopkins PM, Struys MMRF. Oxford textbook of anaesthesia. Oxford University Press; 2017.
    1. Al-Rifai Z, Mulvey D. Principles of total intravenous anaesthesia: practical aspects of using total intravenous anaesthesia. BJA Educ. 2016;16(8):276–80.
    1. Eleveld DJ, Colin P, Absalom AR, Struys MMRF. Pharmacokinetic-pharmacodynamic model for propofol for broad application in anaesthesia and sedation. Br J Anaesth. 2018;120(5):942–959. doi: 10.1016/j.bja.2018.01.018.
    1. Sessler DI, Sigl JC, Kelley SD, Chamoun NG, Manberg PJ, Saager L, Kurz A, Greenwald S. Hospital stay and mortality are increased in patients having a “triple low” of low blood pressure, low bispectral index, and low minimum alveolar concentration of volatile anesthesia. Anesthesiology. 2012;116(6):1195–1203. doi: 10.1097/ALN.0b013e31825683dc.
    1. Vuyk J. TCI: supplementation and drug interactions. Anaesthesia. 1998;53(Suppl 1):35–41. doi: 10.1111/j.1365-2044.1998.53s109.x.
    1. Milne SE, Kenny GN, Schraag S. Propofol sparing effect of remifentanil using closed-loop anaesthesia. Br J Anaesth. 2003;90(5):623–629. doi: 10.1093/bja/aeg115.
    1. Smith C, McEwan AI, Jhaveri R, Wilkinson M, Goodman D, Smith LR, Canada AT, Glass PS. The interaction of fentanyl on the Cp50 of propofol for loss of consciousness and skin incision. Anesthesiology. 1994;81(4):820–828. doi: 10.1097/00000542-199410000-00008.
    1. Kazama T, Ikeda K, Morita K. Reduction by fentanyl of the Cp50 values of propofol and hemodynamic responses to various noxious stimuli. Anesthesiology. 1997;87(2):213–227. doi: 10.1097/00000542-199708000-00007.

Source: PubMed

3
Prenumerera