Evaluation of LOXL1 polymorphisms in eyes with exfoliation glaucoma in Japanese

Nobuo Fuse, Akiko Miyazawa, Toru Nakazawa, Mingge Mengkegale, Takaaki Otomo, Kohji Nishida, Nobuo Fuse, Akiko Miyazawa, Toru Nakazawa, Mingge Mengkegale, Takaaki Otomo, Kohji Nishida

Abstract

Purpose: To investigate the lysyl oxidase-like 1 (LOXL1) gene for single nucleotide polymorphism (SNP) variations in Japanese patients with exfoliation syndrome (XFS) and exfoliation glaucoma (XFG) and to examine the phenotypes of the patients with these variations.

Methods: Fifty-six unrelated Japanese patients with XFS, including 36 patients with XFG, were studied. Genomic DNA was extracted from the leukocytes of peripheral blood, and three SNPs (rs1048661; p.Arg141Leu, rs3825942; p.Gly153Asp, and rs2165241) were identified. These SNPs were amplified by polymerase chain reaction (PCR), directly sequenced, and genotyped.

Results: Two nonsynonymous variants in exon 1 of LOXL1,rs1048661 and rs3825942, were found to be strongly associated with XFS including XFG. The frequency of the T allele (0.964) in rs1048661 in eyes with XFS was much higher in controls (0.507) with a p value of 7.7x10(-18). The odds ratio for the T allele in rs1048661 was 26.0 (95% confidence interval, 18.3-37.1). In the haplotype analysis, T-G was overrepresented in XFS subjects (p=7.7x10(-18)), showing a highly significant difference in frequency between primary open-angle glaucoma (POAG) and the control group (p=0.07), but the G-G and G-A haplotypes were less represented in XFS subjects (p=1.1x10(-11) and p=1.0x10(-4), respectively). However, an earlier study reported the strongest associated SNP with XFS and XFG, rs2165241, showed no association.

Conclusions: SNPs of LOXL1 (rs1048661; Arg141Leu and rs3825942; Gly153Asp) are highly associated with XFS in the Japanese population. However, unidentified genetic or environmental factors independent of LOXL1 will most likely influence the phenotypic expression of the syndrome.

References

    1. Tarkkanen A, Kivela T, John G. Lindberg and the discovery of exfoliation syndrome. Acta Ophthalmol Scand. 2002;80:151–4.
    1. Schlotzer-Schrehardt U, Naumann GO. Ocular and systemic pseudoexfoliation syndrome. Am J Ophthalmol. 2006;141:921–37.
    1. Forsman E, Cantor RM, Lu A, Eriksson A, Fellman J, Jarvela I, Forsius H. Exfoliation syndrome: prevalence and inheritance in a subisolate of the Finnish population. Acta Ophthalmol Scand. 2007;85:500–7.
    1. Mitchell P, Wang JJ, Smith W. Association of pseudoexfoliation syndrome with increased vascular risk. Am J Ophthalmol. 1997;124:685–7.
    1. Ringvold A. Pseudoexfoliation and aortic aneurysms. Lancet. 2001;357:2139–40.
    1. Forsius H. Prevalence of pseudoexfoliation of the lens in Finns, Lapps, Icelanders, Eskimos, and Russians. Trans Ophthalmol Soc U K. 1979;99:296–8.
    1. Forsius H. Exfoliation syndrome in various ethnic populations. Acta Ophthalmol Suppl. 1988;184:71–85.
    1. Ringvold A. Epidemiology of glaucoma in northern Europe. Eur J Ophthalmol. 1996;6:26–9.
    1. Mitchell P, Wang JJ, Hourihan F. The relationship between glaucoma and pseudoexfoliation: the Blue Mountains Eye Study. Arch Ophthalmol. 1999;117:1319–24.
    1. Jonasson F, Damji KF, Arnarsson A, Sverrisson T, Wang L, Sasaki H, Sasaki K. Prevalence of open-angle glaucoma in Iceland: Reykjavik Eye Study. Eye. 2003;17:747–53.
    1. Hirvela H, Luukinen H, Laatikainen L. Prevalence and risk factors of lens opacities in the elderly in Finland. A population-based study. Ophthalmology. 1995;102:108–17.
    1. Yamamoto T, Iwase A, Araie M, Suzuki Y, Abe H, Shirato S, Kuwayama Y, Mishima HK, Shimizu H, Tomita G, Inoue Y, Kitazawa Y. The Tajimi Study report 2: prevalence of primary angle closure and secondary glaucoma in a Japanese population. Ophthalmology. 2005;112:1661–9.
    1. Miyazaki M, Kubota T, Kubo M, Kiyohara Y, Iida M, Nose Y, Ishibashi T. The prevalence of pseudoexfoliation syndrome in a Japanese population: the Hisayama study. J Glaucoma. 2005;14:482–4.
    1. Thorleifsson G, Magnusson KP, Sulem P, Walters GB, Gudbjartsson DF, Stefansson H, Jonsson T, Jonasdottir A, Stefansdottir G, Masson G, Hardarson GA, Petursson H, Arnarsson A, Motallebipour M, Wallerman O, Wadelius C, Gulcher JR, Thorsteinsdottir U, Kong A, Jonasson F, Stefansson K. Common sequence variants in the LOXL1 gene confer susceptibility to exfoliation glaucoma. Science. 2007;317:1397–400.
    1. Fingert JH, Alward WL, Kwon YH, Wang K, Streb LM, Sheffield VC, Stone EM. LOXL1 mutations are associated with exfoliation syndrome in patients from the midwestern United States. Am J Ophthalmol. 2007;144:974–5.
    1. Challa P, Schmidt S, Liu Y, Qin X, Vann RR, Gonzalez P, Allingham RR, Hauser MA. Analysis of LOXL1 polymorphisms in a United States population with pseudoexfoliation glaucoma. Mol Vis. 2008;14:146–9.
    1. Fan BJ, Pasquale L, Grosskreutz CL, Rhee D, Chen T, Deangelis MM, Kim I, Delbono E, Miller JW, Li T, Haines JL, Wiggs JL. DNA sequence variants in the LOXL1 gene are associated with pseudoexfoliation glaucoma in a U.S. clinic-based population with broad ethnic diversity. BMC Med Genet. 2008;9:5.
    1. Hewitt AW, Sharma S, Burdon KP, Wang JJ, Baird PN, Dimasi DP, Mackey DA, Mitchell P, Craig JE. Ancestral LOXL1 variants are associated with pseudoexfoliation in Caucasian Australians but with markedly lower penetrance than in Nordic people. Hum Mol Genet. 2007;17:710–6.
    1. Ramprasad VL, George R, Soumittra N, Sharmila F, Vijaya L, Kumaramanickavel G. Association of non-synonymous single nucleotide polymorphisms in the LOXL1 gene with pseudoexfoliation syndrome in India. Mol Vis. 2008;14:318–22.
    1. Hayashi H, Gotoh N, Ueda Y, Nakanishi H, Yoshimura N. Lysyl oxidase-like 1 polymorphisms and exfoliation syndrome in the Japanese population. Am J Ophthalmol. 2008;145:582–5.
    1. Thomassin L, Werneck CC, Broekelmann TJ, Gleyzal C, Hornstra IK, Mecham RP, Sommer P. The Pro-regions of lysyl oxidase and lysyl oxidase-like 1 are required for deposition onto elastic fibers. J Biol Chem. 2005;280:42848–55.
    1. Liu X, Zhao Y, Gao J, Pawlyk B, Starcher B, Spencer JA, Yanagisawa H, Zuo J, Li T. Elastic fiber homeostasis requires lysyl oxidase-like 1 protein. Nat Genet. 2004;36:178–82.
    1. Zhao JH, Curtis D, Sham PC. Model-free analysis and permutation tests for allelic associations. Hum Hered. 2000;50:133–9.
    1. Lemmela S, Forsman E, Sistonen P, Eriksson A, Forsius H, Jarvela I. Genome-wide scan of exfoliation syndrome. Invest Ophthalmol Vis Sci. 2007;48:4136–42.
    1. Zenkel M, Poschl E, von der Mark K, Hofmann-Rummelt C, Naumann GO, Kruse FE, Schlotzer-Schrehardt U. Differential gene expression in pseudoexfoliation syndrome. Invest Ophthalmol Vis Sci. 2005;46:3742–52.

Source: PubMed

3
Prenumerera