The addition of vildagliptin to metformin prevents the elevation of interleukin 1ß in patients with type 2 diabetes and coronary artery disease: a prospective, randomized, open-label study

Arwa Younis, Dana Eskenazi, Ronen Goldkorn, Jonathan Leor, Nili Naftali-Shani, Enrique Z Fisman, Alexander Tenenbaum, Ilan Goldenberg, Robert Klempfner, Arwa Younis, Dana Eskenazi, Ronen Goldkorn, Jonathan Leor, Nili Naftali-Shani, Enrique Z Fisman, Alexander Tenenbaum, Ilan Goldenberg, Robert Klempfner

Abstract

Background: Patients with type 2 diabetes present with an accelerated atherosclerotic process. Animal evidence indicates that dipeptidyl peptidase-4 inhibitors (gliptins) have anti-inflammatory and anti-atherosclerotic effects, yet clinical data are scarcely available.

Design and methods: A prospective, randomized, open-label study was performed in 60 patients with coronary artery disease (CAD) and type 2 diabetes, who participated in a cardiac rehabilitation program. After a washout period of 3 weeks, patients were randomized in a 2:1 ratio to receive combined vildagliptin/metformin therapy (intervention group: n = 40) vs. metformin alone (control group: n = 20) for a total of 12 weeks. Blinded assessment of interleukin-1ß (IL-1ß, the primary endpoint), hemoglobin A1c (HbA1c), and high sensitivity C reactive protein (hsCRP), were performed at baseline and after 12 weeks.

Results: Mean age of study patients was 67 ± 9 years, 75% were males, and baseline HbA1c and inflammatory markers levels were similar between the two groups. At 12 weeks of follow up, levels of IL-1ß, hsCRP, and HbA1c were significantly lower in the intervention group as compared with the control group. There was a continuous elevation of IL-1ß among the control group, which was not observed in the intervention group (49 vs. 4%, respectively; p < 0.001). The hsCRP was lowered by 60% in the vildagliptin/metformin group vs. 23% in the metformin group (p < 0.01). Moreover, a significant relative reduction of the HbA1c was seen in the intervention group (7% reduction, p < 0.03).

Conclusion: The addition of vildagliptin to metformin treatment in patients with type 2 diabetes and CAD led to a significant suppression of the IL-1ß elevation during follow up. A significant relative reduction of hsCRP and HbA1c in the intervention group was also observed. Trial registration NCT01604213.

Keywords: Dipeptidyl peptidase-4 inhibitors; Gliptins; Interleukin 1 beta; Metformin; Vildagliptin.

Figures

Fig. 1
Fig. 1
Study flow diagram
Fig. 2
Fig. 2
a Levels of IL-1ß at baseline and after 12 weeks of treatment; b Percent change of IL-1ß {Δ% = [(value after treatment−baseline value)/baseline value × 100]}
Fig. 3
Fig. 3
a hsCRP values at baseline and follow up b hsCRP percentage change after 12 weeks of treatment
Fig. 4
Fig. 4
a HbA1c % values at baseline and follow-up b HbA1c percentage change after 12 weeks of treatment

References

    1. Kochanek KD, Murphy SL, Xu J, Tejada-Vera B. Deaths: final data for 2014. Natl Vital Stat Rep Cent Dis Control Prev Natl Center Health Stat Natl Vital Stat Syst. 2016;65(4):1–122.
    1. Park J, Peters PA. Mortality from diabetes mellitus, 2004 to 2008: a multiple-cause-of-death analysis. Health Rep. 2014;25(3):12–16.
    1. Devaraj S, Dasu MR, Jialal I. Diabetes is a proinflammatory state: a translational perspective. Exp Rev Endocrinol Metab. 2010;5(1):19–28. doi: 10.1586/eem.09.44.
    1. Faeh D, William J, Yerly P, Paccaud F, Bovet P. Diabetes and pre-diabetes are associated with cardiovascular risk factors and carotid/femoral intima-media thickness independently of markers of insulin resistance and adiposity. Cardiovasc Diabetol. 2007;6:32. doi: 10.1186/1475-2840-6-32.
    1. Colwell JA, Lopes-Virella M, Halushka PV. Pathogenesis of atherosclerosis in diabetes mellitus. Diabetes Care. 1981;4(1):121–133. doi: 10.2337/diacare.4.1.121.
    1. Pozzati A, Abrignani MG. Pathogenesis of atherosclerosis in diabetes mellitus. Itali Heart J Off J Ital Fed Cardiol. 2004;5(Suppl 4):7S–11S.
    1. Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. New Engl J Med. 1998;339(4):229–234. doi: 10.1056/NEJM199807233390404.
    1. Packard RR, Libby P. Inflammation in atherosclerosis: from vascular biology to biomarker discovery and risk prediction. Clin Chem. 2008;54(1):24–38. doi: 10.1373/clinchem.2007.097360.
    1. Fisman EZ, Motro M, Tenenbaum A. Cardiovascular diabetology in the core of a novel interleukins classification: the bad, the good and the aloof. Cardiovasc Diabetol. 2003;2:11. doi: 10.1186/1475-2840-2-11.
    1. Dinarello CA. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood. 2011;117(14):3720–3732. doi: 10.1182/blood-2010-07-273417.
    1. Schett G, Dayer JM, Manger B. Interleukin-1 function and role in rheumatic disease. Nat Rev Rheumatol. 2016;12(1):14–24. doi: 10.1038/nrrheum.2016.166.
    1. Weber A, Wasiliew P, Kracht M. Interleukin-1 (IL-1) pathway. Sci Signal. 2010;3(105):cm1.
    1. Ridker PM. From C-reactive protein to interleukin-6 to interleukin-1: moving upstream to identify novel targets for atheroprotection. Circ Res. 2016;118(1):145–156. doi: 10.1161/CIRCRESAHA.115.306656.
    1. Liu Z, Zhao N, Zhu H, Zhu S, Pan S, Xu J, Zhang X, Zhang Y, Wang J. Circulating interleukin-1beta promotes endoplasmic reticulum stress-induced myocytes apoptosis in diabetic cardiomyopathy via interleukin-1 receptor-associated kinase-2. Cardiovasc Diabetol. 2015;14:125. doi: 10.1186/s12933-015-0288-y.
    1. Dai Y, Dai D, Wang X, Ding Z, Mehta JL. DPP-4 inhibitors repress NLRP3 inflammasome and interleukin-1beta via GLP-1 receptor in macrophages through protein kinase C pathway. Cardiovasc Drugs Ther. 2014;28(5):425–432. doi: 10.1007/s10557-014-6539-4.
    1. Liu W, Yin Y, Zhou Z, He M, Dai Y. OxLDL-induced IL-1 beta secretion promoting foam cells formation was mainly via CD36 mediated ROS production leading to NLRP3 inflammasome activation. Inflamm Res. 2014;63(1):33–43. doi: 10.1007/s00011-013-0667-3.
    1. Manica-Cattani MF, Duarte MM, Ribeiro EE, de Oliveira R, da Cruz IBM. Effect of the interleukin-1B gene on serum oxidized low-density lipoprotein levels. Clin Biochem. 2012;45(9):641–645. doi: 10.1016/j.clinbiochem.2012.02.023.
    1. Ridker PM. C-reactive protein: eighty years from discovery to emergence as a major risk marker for cardiovascular disease. Clin Chem. 2009;55(2):209–215. doi: 10.1373/clinchem.2008.119214.
    1. Keating GM. Vildagliptin: a review of its use in type 2 diabetes mellitus. Drugs. 2010;70(16):2089–2112. doi: 10.2165/11206370-000000000-00000.
    1. Shah Z, Kampfrath T, Deiuliis JA, Zhong J, Pineda C, Ying Z, Xu X, Lu B, Moffatt-Bruce S, Durairaj R, et al. Long-term dipeptidyl-peptidase 4 inhibition reduces atherosclerosis and inflammation via effects on monocyte recruitment and chemotaxis. Circulation. 2011;124(21):2338–2349. doi: 10.1161/CIRCULATIONAHA.111.041418.
    1. Yin M, Sillje HH, Meissner M, van Gilst WH, de Boer RA. Early and late effects of the DPP-4 inhibitor vildagliptin in a rat model of post-myocardial infarction heart failure. Cardiovasc Diabetol. 2011;10:85. doi: 10.1186/1475-2840-10-85.
    1. Cameron AR, Morrison VL, Levin D, Mohan M, Forteath C, Beall C, McNeilly AD, Balfour DJ, Savinko T, Wong AK, et al. Anti-inflammatory effects of metformin irrespective of diabetes status. Circ Res. 2016;119(5):652–665. doi: 10.1161/CIRCRESAHA.116.308445.
    1. Yu JW, Deng YP, Han X, Ren GF, Cai J, Jiang GJ. Metformin improves the angiogenic functions of endothelial progenitor cells via activating AMPK/eNOS pathway in diabetic mice. Cardiovasc Diabetol. 2016;15:88. doi: 10.1186/s12933-016-0408-3.
    1. Arunachalam G, Lakshmanan AP, Samuel SM, Triggle CR, Ding H. Molecular interplay between microRNA-34a and sirtuin1 in hyperglycemia-mediated impaired angiogenesis in endothelial cells: effects of metformin. J Pharmacol Exp Ther. 2016;356(2):314–323. doi: 10.1124/jpet.115.226894.
    1. Ahmed FW, Rider R, Glanville M, Narayanan K, Razvi S, Weaver JU. Metformin improves circulating endothelial cells and endothelial progenitor cells in type 1 diabetes: mERIT study. Cardiovasc Diabetol. 2016;15(1):116. doi: 10.1186/s12933-016-0413-6.
    1. Bakhashab S, Ahmed FW, Schulten HJ, Bashir A, Karim S, Al-Malki AL, Gari MA, Abuzenadah AM, Chaudhary AG, Alqahtani MH, et al. Metformin improves the angiogenic potential of human CD34(+) cells co-incident with downregulating CXCL10 and TIMP1 gene expression and increasing VEGFA under hyperglycemia and hypoxia within a therapeutic window for myocardial infarction. Cardiovasc Diabetol. 2016;15:27. doi: 10.1186/s12933-016-0344-2.
    1. Vasamsetti SB, Karnewar S, Kanugula AK, Thatipalli AR, Kumar JM, Kotamraju S. Metformin inhibits monocyte-to-macrophage differentiation via AMPK-mediated inhibition of STAT3 activation: potential role in atherosclerosis. Diabetes. 2015;64(6):2028–2041. doi: 10.2337/db14-1225.
    1. Buldak L, Machnik G, Buldak RJ, Labuzek K, Boldys A, Okopien B. Exenatide and metformin express their anti-inflammatory effects on human monocytes/macrophages by the attenuation of MAPKs and NFkappaB signaling. Naunyn Schmiedeberg’s arch pharmacol. 2016;389(10):1103–1115. doi: 10.1007/s00210-016-1277-8.
    1. Bromage DI, Yellon DM. The pleiotropic effects of metformin: time for prospective studies. Cardiovasc Diabetol. 2015;14:109. doi: 10.1186/s12933-015-0273-5.
    1. Alexander MR, Moehle CW, Johnson JL, Yang Z, Lee JK, Jackson CL, Owens GK. Genetic inactivation of IL-1 signaling enhances atherosclerotic plaque instability and reduces outward vessel remodeling in advanced atherosclerosis in mice. J Clin Investig. 2012;122(1):70–79. doi: 10.1172/JCI43713.
    1. Kim TW, Febbraio M, Robinet P, Dugar B, Greene D, Cerny A, Latz E, Gilmour R, Staschke K, Chisolm G, et al. The critical role of IL-1 receptor-associated kinase 4-mediated NF-kappaB activation in modified low-density lipoprotein-induced inflammatory gene expression and atherosclerosis. J Immunol. 2011;186(5):2871–2880. doi: 10.4049/jimmunol.1002242.
    1. Rader DJ. IL-1 and atherosclerosis: a murine twist to an evolving human story. J Clin Investig. 2012;122(1):27–30. doi: 10.1172/JCI61163.
    1. Sheedy FJ, Moore KJ. IL-1 signaling in atherosclerosis: sibling rivalry. Nat Immunol. 2013;14(10):1030–1032. doi: 10.1038/ni.2711.
    1. Terasaki M, Nagashima M, Nohtomi K, Kohashi K, Tomoyasu M, Sinmura K, Nogi Y, Katayama Y, Sato K, Itoh F, et al. Preventive effect of dipeptidyl peptidase-4 inhibitor on atherosclerosis is mainly attributable to incretin’s actions in nondiabetic and diabetic apolipoprotein E-null mice. PLoS ONE. 2013;8(8):e70933. doi: 10.1371/journal.pone.0070933.
    1. Klempfner R, Leor J, Tenenbaum A, Fisman EZ, Goldenberg I. Effects of a vildagliptin/metformin combination on markers of atherosclerosis, thrombosis, and inflammation in diabetic patients with coronary artery disease. Cardiovasc Diabetol. 2012;11:60. doi: 10.1186/1475-2840-11-60.
    1. Dinarello CA, Donath MY, Mandrup-Poulsen T. Role of IL-1beta in type 2 diabetes. Curr Opin Endocrinol Diabetes Obes. 2010;17(4):314–321.
    1. Maedler K, Sergeev P, Ris F, Oberholzer J, Joller-Jemelka HI, Spinas GA, Kaiser N, Halban PA, Donath MY. Glucose-induced beta cell production of IL-1beta contributes to glucotoxicity in human pancreatic islets. J Clin Investig. 2002;110(6):851–860. doi: 10.1172/JCI200215318.
    1. Larsen CM, Faulenbach M, Vaag A, Volund A, Ehses JA, Seifert B, Mandrup-Poulsen T, Donath MY. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. New Engl J Med. 2007;356(15):1517–1526. doi: 10.1056/NEJMoa065213.
    1. Vallejo S, Palacios E, Romacho T, Villalobos L, Peiro C, Sanchez-Ferrer CF. The interleukin-1 receptor antagonist anakinra improves endothelial dysfunction in streptozotocin-induced diabetic rats. Cardiovasc Diabetol. 2014;13:158. doi: 10.1186/s12933-014-0158-z.
    1. Hayden JM, Reaven PD. Cardiovascular disease in diabetes mellitus type 2: a potential role for novel cardiovascular risk factors. Curr Opin Lipidol. 2000;11(5):519–528. doi: 10.1097/00041433-200010000-00010.
    1. Pant S, Deshmukh A, Gurumurthy GS, Pothineni NV, Watts TE, Romeo F, Mehta JL. Inflammation and atherosclerosis–revisited. J Cardiovasc Pharmacol Ther. 2014;19(2):170–178. doi: 10.1177/1074248413504994.
    1. Ding Z, Liu S, Wang X, Khaidakov M, Dai Y, Mehta JL. Oxidant stress in mitochondrial DNA damage, autophagy and inflammation in atherosclerosis. Sci Rep. 1077;2013:3.
    1. Jiang Y, Wang M, Huang K, Zhang Z, Shao N, Zhang Y, Wang W, Wang S. Oxidized low-density lipoprotein induces secretion of interleukin-1beta by macrophages via reactive oxygen species-dependent NLRP3 inflammasome activation. Biochem Biophys Res Commun. 2012;425(2):121–126. doi: 10.1016/j.bbrc.2012.07.011.
    1. Jose T, Inzucchi SE. Cardiovascular effects of the DPP-4 inhibitors. Diabetes Vasc Dis Res. 2012;9(2):109–116. doi: 10.1177/1479164111436236.

Source: PubMed

3
Prenumerera