Hass Avocado Inclusion in a Weight-Loss Diet Supported Weight Loss and Altered Gut Microbiota: A 12-Week Randomized, Parallel-Controlled Trial

Susanne M Henning, Jieping Yang, Shih Lung Woo, Ru-Po Lee, Jianjun Huang, Anna Rasmusen, Catherine L Carpenter, Gail Thames, Irene Gilbuena, Chi-Hong Tseng, David Heber, Zhaoping Li, Susanne M Henning, Jieping Yang, Shih Lung Woo, Ru-Po Lee, Jianjun Huang, Anna Rasmusen, Catherine L Carpenter, Gail Thames, Irene Gilbuena, Chi-Hong Tseng, David Heber, Zhaoping Li

Abstract

Background: Avocados contain fiber, lutein, and vitamin E, and they are a rich source of MUFAs. The effect of including an avocado daily as part of a hypocaloric weight-loss diet on weight loss is not known.

Objective: The aim of this study was to determine the effect of daily avocado consumption as part of a hypocaloric diet on weight loss, body composition, satiety, biomarkers of inflammation, and intestinal microbiota composition.

Methods: In this randomized, parallel-controlled, open-label, 2-arm intervention study, 51 healthy overweight/obese women and men were assigned to a hypocaloric diet with 1 Hass avocado daily (AVO; n = 24) or a hypocaloric diet (CTRL; n = 27) without daily avocado for 12 wk. Serum markers and intestinal microbiota were analyzed at baseline and week 12.

Results: Both groups experienced significant weight loss, decrease in BMI (in kg/m2), total body fat, and visceral adipose tissue, respectively (AVO: -2.3 ± 2 kg, -0.8 ± 0.8, -1.1% ± 2%, and -81.2 ± 118 g; CTRL: -2.6 ± 3.6 kg, -0.9 ± 1, -1.5% ± 2%, and -87.4 ± 216 g). We observed a significant decrease in serum glucose over time in the control group compared with the AVO group. There was no change between the groups in serum triglyceride, but a significant decrease from baseline to 12 wk was observed in the AVO group. Serum hepatic growth factor (HGF) and relative proportion of bacterial phyla (Firmicutes and Bacteroidetes), family (Bacteroidaceae and Erysipelotrichaceae), and genus (Bacteroides, Clostridium, Methanosphaera, and Candidatus Soleaferrea) were significantly altered in the AVO group compared with the CTRL group. A trend to decrease in serum inflammatory factors IL-1β (P = 0.07) and C-reactive protein (P = 0.074) was observed in the AVO group compared with CTRL.

Conclusions: Daily Hass avocado consumption as part of a hypocaloric diet supported weight loss, a decrease in serum HGF, and an increase in the abundance of bacteria involved in plant polysaccharide fermentation. This trial was registered at clinicaltrials.gov as NCT02953158.

Keywords: avocado; clinical trial; hepatic growth factor; inflammation; intestinal microbiota; satiety; weight loss.

Figures

FIGURE 1
FIGURE 1
Body weight changes of participants in the AVO and CTRL groups from baseline to week 12. Data are means ± SDs, n = 27 (CTRL) and n = 24 (AVO). ANCOVA model was used to compare outcomes adjusted for baseline value. *P < 0.05. AVO, Hass avocado group; CTRL, control group.
FIGURE 2
FIGURE 2
Satiety score changes of participants in the AVO and CTRL groups from baseline to week 12. Data are means ± SDs, n = 27 (CTRL) and n = 24 (AVO). ANCOVA model was used to compare outcomes adjusted for baseline value. *P < 0.05. AVO, Hass avocado group; CTRL, control group.
FIGURE 3
FIGURE 3
Correlation between intestinal bacteria from phylum and family level to change in weight, body composition, and metabolic and inflammatory markers from baseline to week 12. *P = 0.05, **P = 0.01, ***P = 0.001. Chol, cholesterol; CRP, C-reactive protein; HGF, hepatic growth factor; MCP, monocyte chemoattractant protein; Tchol, total cholesterol; TGF, transforming growth factor.

References

    1. GBD 2015 Obesity Collaborators Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K, Lee A, Marczak L, Mokdad AH, Moradi-Lakeh M et al. .. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med 2017;377(1):13–27.
    1. Kim SH, Despres JP, Koh KK. Obesity and cardiovascular disease: friend or foe? Eur Heart J 2016;37(48):3560–8.
    1. Iyengar NM, Hudis CA, Dannenberg AJ. Obesity and cancer: local and systemic mechanisms. Annu Rev Med 2015;66:297–309.
    1. Chobot A, Gorowska-Kowolik K, Sokolowska M, Jarosz-Chobot P. Obesity and diabetes—not only a simple link between two epidemics. Diabetes Metab Res Rev 2018;34(7):e3042.
    1. Wing RR, Lang W, Wadden TA, Safford M, Knowler WC, Bertoni AG, Hill JO, Brancati FL, Peters A, Wagenknecht L et al. .. Benefits of modest weight loss in improving cardiovascular risk factors in overweight and obese individuals with type 2 diabetes. Diabetes Care 2011;34(7):1481–6.
    1. Zubrzycki A, Cierpka-Kmiec K, Kmiec Z, Wronska A. The role of low-calorie diets and intermittent fasting in the treatment of obesity and type-2 diabetes. J Physiol Pharmacol 2018;69(5). doi: 10.26402/jpp.2018.5.02.
    1. Blaak EE. Carbohydrate quantity and quality and cardio-metabolic risk. Curr Opin Clin Nutr Metab Care 2016;19(4):289–93.
    1. Dreher ML, Davenport AJ. Hass avocado composition and potential health effects. Crit Rev Food Sci Nutr 2013;53(7):738–50.
    1. Lu QY, Zhang Y, Wang Y, Wang D, Lee RP, Gao K, Byrns R, Heber D. California Hass avocado: profiling of carotenoids, tocopherol, fatty acid, and fat content during maturation and from different growing areas. J Agric Food Chem 2009;57(21):10408–13.
    1. Li Z, Wong A, Henning SM, Zhang Y, Jones A, Zerlin A, Thames G, Bowerman S, Tseng CH, Heber D. Hass avocado modulates postprandial vascular reactivity and postprandial inflammatory responses to a hamburger meal in healthy volunteers. Food Funct 2013;4(3):384–91.
    1. Wien M, Haddad E, Oda K, Sabate J. A randomized 3×3 crossover study to evaluate the effect of Hass avocado intake on post-ingestive satiety, glucose and insulin levels, and subsequent energy intake in overweight adults. Nutr J 2013;12:155.
    1. Turner TF, Nance LM, Strickland WD, Malcolm RJ, Pechon S, O'Neil PM. Dietary adherence and satisfaction with a bean-based high-fiber weight loss diet: a pilot study. ISRN Obesity 2013;2013:915415.
    1. Tilg H, Moschen AR. Microbiota and diabetes: an evolving relationship. Gut 2014;63(9):1513–21.
    1. Tuohy KM, Fava F, Viola R “The way to a man's heart is through his gut microbiota”—dietary pro- and prebiotics for the management of cardiovascular risk. Proc Nutr Soc 2014;73(2):172–85.
    1. Korpela K, Flint HJ, Johnstone AM, Lappi J, Poutanen K, Dewulf E, Delzenne N, de Vos WM, Salonen A. Gut microbiota signatures predict host and microbiota responses to dietary interventions in obese individuals. PLoS One 2014;9(6):e90702.
    1. Million M, Lagier JC, Yahav D, Paul M. Gut bacterial microbiota and obesity. Clin Microbiol Infect 2013;19(4):305–13.
    1. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP et al. .. A core gut microbiome in obese and lean twins. Nature 2009;457(7228):480–4.
    1. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA et al. .. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014;505(7484):559–63.
    1. Bagga D, Capone S, Wang HJ, Heber D, Lill M, Chap L, Glaspy JA. Dietary modulation of omega-3/omega-6 polyunsaturated fatty acid ratios in patients with breast cancer. J Natl Cancer Inst 1997;89(15):1123–31.
    1. Henning SM, Yang J, Shao P, Lee RP, Huang J, Ly A, Hsu M, Lu QY, Thames G, Heber D et al. .. Health benefit of vegetable/fruit juice-based diet: role of microbiome. Sci Rep 2017;7(1):2167.
    1. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 2006;72(7):5069–72.
    1. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI et al. .. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 2010;7(5):335–6.
    1. Lozupone C, Knight R.. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 2005;71(12):8228–35.
    1. Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R et al. .. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 2013;31(9):814–21.
    1. Gerhard GT, Ahmann A, Meeuws K, McMurry MP, Duell PB, Connor WE. Effects of a low-fat diet compared with those of a high-monounsaturated fat diet on body weight, plasma lipids and lipoproteins, and glycemic control in type 2 diabetes. Am J Clin Nutr 2004;80(3):668–73.
    1. Petersen M, Taylor MA, Saris WH, Verdich C, Toubro S, Macdonald I, Rossner S, Stich V, Guy-Grand B, Langin D et al. .. Randomized, multi-center trial of two hypo-energetic diets in obese subjects: high- versus low-fat content. Int J Obes 2006;30(3):552–60.
    1. Makki K, Deehan EC, Walter J, Backhed F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 2018;23(6):705–15.
    1. Weickert MO, Pfeiffer AFH.. Impact of dietary fiber consumption on insulin resistance and the prevention of type 2 diabetes. J Nutr 2018;148(1):7–12.
    1. Foster GD, Wyatt HR, Hill JO, McGuckin BG, Brill C, Mohammed BS, Szapary PO, Rader DJ, Edman JS, Klein S. A randomized trial of a low-carbohydrate diet for obesity. N Engl J Med 2003;348(21):2082–90.
    1. DiNicolantonio JJ, O'Keefe JH.. Effects of dietary fats on blood lipids: a review of direct comparison trials. Open Heart 2018;5(2):e000871.
    1. Hannon BA, Thompson SV, Edwards CG, Skinner SK, Niemiro GM, Burd NA, Holscher HD, Teran-Garcia M, Khan NA. Dietary fiber is independently related to blood triglycerides among adults with overweight and obesity. Curr Dev Nutr 2019;3(2):nzy094.
    1. Peou S, Milliard-Hasting B, Shah SA. Impact of avocado-enriched diets on plasma lipoproteins: a meta-analysis. J Clin Lipidol 2016;10(1):161–71.
    1. Mensink RP, Zock PL, Kester AD, Katan MB. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am J Clin Nutr 2003;77(5):1146–55.
    1. Mahmassani HA, Avendano EE, Raman G, Johnson EJ. Avocado consumption and risk factors for heart disease: a systematic review and meta-analysis. Am J Clin Nutr 2018;107(4):523–36.
    1. Clarke SF, Murphy EF, Nilaweera K, Ross PR, Shanahan F, O'Toole PW, Cotter PD. The gut microbiota and its relationship to diet and obesity: new insights. Gut Microbes 2012;3(3):186–202.
    1. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM et al. .. Enterotypes of the human gut microbiome. Nature 2011;473(7346):174–80.
    1. Chen T, Long W, Zhang C, Liu S, Zhao L, Hamaker BR. Fiber-utilizing capacity varies in Prevotella- versus Bacteroides-dominated gut microbiota. Sci Rep 2017;7(1):2594.
    1. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 2010;107(33):14691–6.
    1. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R et al. .. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011;334(6052):105–8.
    1. Jiao N, Baker SS, Nugent CA, Tsompana M, Cai L, Wang Y, Buck MJ, Genco RJ, Baker RD, Zhu R et al. .. Gut microbiome may contribute to insulin resistance and systemic inflammation in obese rodents: a meta-analysis. Physiol Genomics 2018;50(4):244–54.
    1. Sandberg J, Kovatcheva-Datchary P, Bjorck I, Backhed F, Nilsson A. Abundance of gut Prevotella at baseline and metabolic response to barley prebiotics. Eur J Nutr 2018;[Epub ahead of print]. doi:10.1007/s00394-018-1788-9.
    1. Hjorth MF, Blaedel T, Bendtsen LQ, Lorenzen JK, Holm JB, Kiilerich P, Roager HM, Kristiansen K, Larsen LH, Astrup A. Prevotella-to-Bacteroides ratio predicts body weight and fat loss success on 24-week diets varying in macronutrient composition and dietary fiber: results from a post-hoc analysis. Int J Obes 2019;43(1):149–57.
    1. Flint HJ, Bayer EA.. Plant cell wall breakdown by anaerobic microorganisms from the Mammalian digestive tract. Ann N Y Acad Sci 2008;1125:280–8.
    1. La Reau AJ, Meier-Kolthoff JP, Suen G. Sequence-based analysis of the genus Ruminococcus resolves its phylogeny and reveals strong host association. Microbial Genomics 2016;2(12):e000099.
    1. Bang SJ, Kim G, Lim MY, Song EJ, Jung DH, Kum JS, Nam YD, Park CS, Seo DH. The influence of in vitro pectin fermentation on the human fecal microbiome. AMB Express 2018;8(1):98.
    1. Menni C, Jackson MA, Pallister T, Steves CJ, Spector TD, Valdes AM. Gut microbiome diversity and high-fibre intake are related to lower long-term weight gain. Int J Obes 2017;41(7):1099–105.
    1. Fouhse JM, Ganzle MG, Beattie AD, Vasanthan T, Zijlstra RT. Whole-grain starch and fiber composition modifies ileal flow of nutrients and nutrient availability in the hindgut, shifting fecal microbial profiles in pigs. J Nutr 2017;147(11):2031–40.
    1. Devkota S, Chang EB.. Interactions between diet, bile acid metabolism, gut microbiota, and inflammatory bowel diseases. Dig Dis 2015;33(3):351–6.
    1. Oliveira AG, Araujo TG, Carvalho BM, Rocha GZ, Santos A, Saad MJA. The role of hepatocyte growth factor (HGF) in insulin resistance and diabetes. Front Endocrinol (Lausanne) 2018;9:503.
    1. Agrawal RP, Sheroan V, Ola V, Sulemani AA, Singh N, Sirohi P, Gothwal S, Meel JK. Hepatocyte growth factor, adiponectin and hepatic histopathology in non-alcoholic steatohepatitis. J Assoc Physicians India 2013;61(11):789–92.
    1. Bancks MP, Bielinski SJ, Decker PA, Hanson NQ, Larson NB, Sicotte H, Wassel CL, Pankow JS. Circulating level of hepatocyte growth factor predicts incidence of type 2 diabetes mellitus: The Multi-Ethnic Study of Atherosclerosis (MESA). Metabolism 2016;65(3):64–72.
    1. Molnarfi N, Benkhoucha M, Funakoshi H, Nakamura T, Lalive PH. Hepatocyte growth factor: A regulator of inflammation and autoimmunity. Autoimmun Rev 2015;14(4):293–303.
    1. Sproston NR, Ashworth JJ.. Role of C-reactive protein at sites of inflammation and infection. Front Immunol 2018;9:754.
    1. Yatsuya H, Jeffery RW, Langer SL, Mitchell N, Flood AP, Welsh EM, Jaeb MA, Laqua PS, Crowell M, Levy RL. Changes in C-reactive protein during weight loss and the association with changes in anthropometric variables in men and women: LIFE Study. Int J Obes 2011;35(5):684–91.
    1. Beavers KM, Beavers DP, Newman JJ, Anderson AM, Loeser RF Jr, Nicklas BJ, Lyles MF, Miller GD, Mihalko SL, Messier SP. Effects of total and regional fat loss on plasma CRP and IL-6 in overweight and obese, older adults with knee osteoarthritis. Osteoarthritis Cartilage 2015;23(2):249–56.
    1. Fritsche KL. The science of fatty acids and inflammation. Adv Nutr 2015;6(3):293S–301S.

Source: PubMed

3
Prenumerera