Sleep Disturbances in Newborns

Daphna Yasova Barbeau, Michael D Weiss, Daphna Yasova Barbeau, Michael D Weiss

Abstract

The purpose of this review is to serve as an introduction to understanding sleep in the fetus, the preterm neonate and the term neonate. Sleep appears to have numerous important roles, particularly in the consolidation of new information. The sleep cycle changes over time, neonates spend the most time in active sleep and have a progressive shortening of active sleep and lengthening of quiet sleep. Additionally, the sleep cycle is disrupted by many things including disease state and environment, and the amplitude integrated EEG can be a useful tool in evaluating sleep, and sleep disturbances, in neonates. Finally, there are protective factors for infant sleep that are still being studied.

Keywords: aEEG; apnea; premature neonate; sleep; sleep disorder; sleep disturbances; sleep states; sleep wake cycling.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Active versus quiet sleep in neonates at 28 weeks, 36 weeks, term, and 1 month. The duration of quiet sleep increases as the neonate matures. The figure is adapted from [24].
Figure 2
Figure 2
Trace alternant in a term baby (A) and sleep-wake cycling in an amplitude integrated EEG (aEEG) (B). Note the alternating background in (A). (B) demonstrates expansion of the background pattern during quiet sleep and narrowing during awake/active sleep. Quiet sleep on the aEEG is the equivalent of trace alternant on the EEG. Figures are derived from [32,38].
Figure 2
Figure 2
Trace alternant in a term baby (A) and sleep-wake cycling in an amplitude integrated EEG (aEEG) (B). Note the alternating background in (A). (B) demonstrates expansion of the background pattern during quiet sleep and narrowing during awake/active sleep. Quiet sleep on the aEEG is the equivalent of trace alternant on the EEG. Figures are derived from [32,38].
Figure 3
Figure 3
The aEEG derives a tracing from the raw EEG. In step 1, six seconds of the raw EEG is extrapolated. In step 2, the signal is filtered. The filtering includes an asymmetric band pass filter that attenuates activity below 2 Hz and above 15 Hz. In step 3, the signal is rectified and smoothed. Note the negative inflections are converted to positive inflections. In steps 4, 5, and 6 the signal undergoes a series of time compressions. The time compressions steps then lead to a single line. Multiple lines then form a pattern for interpretation. The amplitude display on the bedside monitor is linear between 0 to 10 µV and logarithmic between 10 to 100 µV (Derived from [29]).

References

    1. Spielman R.M., Dumper K., Jenkins W., Lacombe A., Lovett M., Perlmutter M. Psychology. Openstax; Houston, TX, USA: 2017. States of Consciousness; pp. 111–148.
    1. Chaput J.P., Gray C.E., Poitras V.J., Carson V., Gruber R., Olds T., Weiss S.K., Connor Gorber S., Kho M.E., Sampson M., et al. Systematic review of the relationships between sleep duration and health indicators in school-aged children and youth. Appl. Physiol. Nutr. Metab. 2016;41(Suppl. 3):S266–S282. doi: 10.1139/apnm-2015-0627.
    1. Van den Hoogen A., Teunis C.J., Shellhaas R.A., Pillen S., Benders M., Dudink J. How to improve sleep in a neonatal intensive care unit: A systematic review. Early Hum. Dev. 2017 doi: 10.1016/j.earlhumdev.2017.07.002.
    1. Mirmiran M. The importance of fetal/neonatal REM sleep. Eur. J. Obstet. Gynecol. Reprod. Biol. 1986;21:283–291. doi: 10.1016/0028-2243(86)90006-7.
    1. Fagioli I., Salzarulo P. Temporal organization of sleep cycles in infants over 24-hour periods. Rev. Electroencephalogr. Neurophysiol. Clin. 1982;12:344–348. doi: 10.1016/S0370-4475(82)80024-5.
    1. Peirano P., Fagioli I., Bes F., Salzarulo P. The role of slow-wave sleep on the duration of quiet sleep in infants. J. Sleep Res. 1993;2:130–133. doi: 10.1111/j.1365-2869.1993.tb00075.x.
    1. Anders T.F., Keener M. Developmental course of nighttime sleep-wake patterns in full-term and premature infants during the first year of life. I. Sleep. 1985;8:173–192. doi: 10.1093/sleep/8.3.173.
    1. Ficca G., Fagioli I., Salzarulo P. Sleep organization in the first year of life: developmental trends in the quiet sleep-paradoxical sleep cycle. J. Sleep Res. 2000;9:1–4. doi: 10.1046/j.1365-2869.2000.00172.x.
    1. Iglowstein I., Latal Hajnal B., Molinari L., Largo R.H., Jenni O.G. Sleep behaviour in preterm children from birth to age 10 years: A longitudinal study. Acta Paediatr. 2006;95:1691–1693. doi: 10.1080/08035250600686938.
    1. Eiselt M., Curzi-Dascalova L., Clairambault J., Kauffmann F., Médigue C., Peirano P. Heart-rate variability in low-risk prematurely born infants reaching normal term: A comparison with full-term newborns. Early Hum. Dev. 1993;32:183–195. doi: 10.1016/0378-3782(93)90011-I.
    1. Collins C.L., Barfield C., Davis P.G., Horne R.S. Randomized controlled trial to compare sleep and wake in preterm infants less than 32 weeks of gestation receiving two different modes of non-invasive respiratory support. Early Hum. Dev. 2015;91:701–704. doi: 10.1016/j.earlhumdev.2015.09.011.
    1. Werth J., Atallah L., Andriessen P., Long X., Zwartkruis-Pelgrim E., Aarts R.M. Unobtrusive sleep state measurements in preterm infants—A review. Sleep Med. Rev. 2017;32:109–122. doi: 10.1016/j.smrv.2016.03.005.
    1. Rurak D. Prenatal and Postnatal Determinants of Development. Humana Press; Melbourne, Australia: 2016. Fetal Sleep and Spontaneous Behavior In Utero: Animal; pp. 89–146.
    1. De Vries J.I., Visser G.H., Prechtl H.F. Fetal behaviour in early pregnancy. Eur. J. Obstet. Gynecol. Reprod. Biol. 1986;21:271–276. doi: 10.1016/0028-2243(86)90003-1.
    1. Nijhuis J.G., Prechtl H.F., Martin C.B., Jr., Bots R.S. Are there behavioural states in the human fetus? Early Hum. Dev. 1982;6:177–195. doi: 10.1016/0378-3782(82)90106-2.
    1. Anders T.F., Keener M.A., Kraemer H. Sleep-wake state organization, neonatal assessment and development in premature infants during the first year of life. II. Sleep. 1985;8:193–206. doi: 10.1093/sleep/8.3.193.
    1. Ardura J., Andrés J., Aldana J., Revilla M.A. Development of sleep-wakefulness rhythm in premature babies. Acta Paediatr. 1995;84:484–489. doi: 10.1111/j.1651-2227.1995.tb13679.x.
    1. Mirmiran M., Maas Y.G., Ariagno R.L. Development of fetal and neonatal sleep and circadian rhythms. Sleep Med. Rev. 2003;7:321–334. doi: 10.1053/smrv.2002.0243.
    1. Curzi-Dascalova L. Development of the sleep and autonomic nervous system control in premature and full-term newborn infants. Arch. Pediatr. 1995;2:255–262. doi: 10.1016/0929-693X(96)81138-9.
    1. Holditch-Davis D., Scher M., Schwartz T., Hudson-Barr D. Sleeping and waking state development in preterm infants. Early Hum. Dev. 2004;80:43–64. doi: 10.1016/j.earlhumdev.2004.05.006.
    1. Dafna E., Halevi M., Ben Or D., Tarasiuk A., Zigel Y. Estimation of Macro Sleep Stages from whole Night Audio Analysis; Proceedings of the IEEE 38th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC); Orlando, FL, USA. 16–20 August 2016.
    1. Arditi-Babchuk H., Feldman R., Eidelman A.I. Rapid eye movement (REM) in premature neonates and developmental outcome at 6 months. Infant Behav. Dev. 2009;32:27–32. doi: 10.1016/j.infbeh.2008.09.001.
    1. Levy J., Hassan F., Plegue M.A., Sokoloff M.D., Kushwaha J.S., Chervin R.D., Barks J.D., Shellhaas R.A. Impact of hands-on care on infant sleep in the neonatal intensive care unit. Pediatr. Pulmonol. 2017;52:84–90. doi: 10.1002/ppul.23513.
    1. Guyer C., Huber R., Fontijn J., Bucher H.U., Nicolai H., Werner H., Molinari L., Latal B., Jenni O.G. Very preterm infants show earlier emergence of 24-hour sleep-wake rhythms compared to term infants. Early Hum. Dev. 2015;91:37–42. doi: 10.1016/j.earlhumdev.2014.11.002.
    1. Huang Y.-S., Paiva T., Hsu J.-F., Kuo M.-C., Guilleminault C. Sleep and breathing in premature infants at 6 months post-natal age. BMC Pediatr. 2014;14:303. doi: 10.1186/s12887-014-0303-6.
    1. El-Dib M., Massaro A.N., Glass P., Aly H. Sleep wake cycling and neurodevelopmental outcome in very low birth weight infants. J. Matern. Fetal Neonatal Med. 2014;27:892–897. doi: 10.3109/14767058.2013.845160.
    1. Geva R., Yaron H., Kuint J. Neonatal sleep predicts attention orienting and distractibility. J. Atten. Disord. 2016;20:138–150. doi: 10.1177/1087054713491493.
    1. Stefanski M., Schulze K., Bateman D., Kairam R., Pedley T.A., Masterson J., James L.S. A scoring system for states of sleep and wakefulness in term and preterm infants. Pediatr. Res. 1984;18:58–62.
    1. Tracey K.J. Reflex control of immunity. Nat. Rev. Immunol. 2009;9:418–428. doi: 10.1038/nri2566.
    1. Pfurtscheller K., Müller-Putz G.R., Urlesberger B., Müller W., Pfurtscheller G. Relationship between slow-wave EEG bursts and heart rate changes in preterm infants. Neurosci. Lett. 2005;385:126–130. doi: 10.1016/j.neulet.2005.05.030.
    1. Werth J., Long X., Zwartkruis-Pelgrim E., Niemarkt H., Chen W., Aarts R.M., Andriessen P. Unobtrusive assessment of neonatal sleep state based on heart rate variability retrieved from electrocardiography used for regular patient monitoring. Early Hum. Dev. 2017 doi: 10.1016/j.earlhumdev.2017.07.004.
    1. Joosten K., De Goederen R., Pijpers A., Allegaert K. Sleep related breathing disorders and indications for polysomnography in preterm infants. Early Hum. Dev. 2017 doi: 10.1016/j.earlhumdev.2017.07.005.
    1. Butkov N., Keenan S.A. An Overview of Polysomnographic Technique. In: Chokroverty S., editor. Sleep Disorders Medicine: Basic Science, Technical Considerations and Clinical Aspects. Springer New York; New York, NY, USA: 2017. pp. 267–294.
    1. Dereymaeker A., Pillay K., Vervisch J., De Vos M., Van Huffel S., Jansen K., Naulaers G. Review of sleep-EEG in preterm and term neonates. Early Hum. Dev. 2017 doi: 10.1016/j.earlhumdev.2017.07.003.
    1. De Weerd A.W., Van den Bossche R.A. The development of sleep during the first months of life. Sleep Med. Rev. 2003;7:179–191. doi: 10.1053/smrv.2002.0198.
    1. Scher M.S., Johnson M.W., Holditch-Davis D. Cyclicity of neonatal sleep behaviors at 25 to 30 weeks’ postconceptional age. Pediatr. Res. 2005;57:879–882. doi: 10.1203/01.PDR.0000157678.84132.A8.
    1. Globus G.G. Quantification of the REM sleep cycle as a rhythm. Psychophysiology. 1970;7:248–253. doi: 10.1111/j.1469-8986.1970.tb02230.x.
    1. Hellstrom-Westas L., Rosén I., De Vries L.S., Greisen G. Amplitude-integrated EEG Classification and Intepretation in Preterm and Term Infants. Neoreviews. 2006;7:76–87. doi: 10.1542/neo.7-2-e76.
    1. Bjerre I., Hellström-Westas L., Rosén I., Svenningsen N. Monitoring of cerebral function after severe asphyxia in infancy. Arch. Dis. Child. 1983;58:997–1002. doi: 10.1136/adc.58.12.997.
    1. Viniker D.A., Maynard D.E., Scott D.F. Cerebral function monitor studies in neonates. Clin. Electroencephalogr. 1984;15:185–192. doi: 10.1177/155005948401500401.
    1. Britton J.W., Frey L.C., Hopp J.L., Korb P., Koubeissi M.Z., Lievens W., Pestana-Knight E.M., St. Louis E.K. Electroencephalography (EEG): An Introductory Text and Atlas of Normal and Abnormal Findings in Adults, Children, and Infants. American Epilepsy Society; Chicago, IL, USA: 2016.
    1. Tao J.D., Mathur A.M. Using amplitude-integrated EEG in neonatal intensive care. J. Perinatol. 2010;30(Suppl. 1):S73–S81. doi: 10.1038/jp.2010.93.
    1. Thornberg E., Thiringer K. Normal pattern of the cerebral function monitor trace in term and preterm neonates. Acta Paediatr. Scand. 1990;79:20–25. doi: 10.1111/j.1651-2227.1990.tb11324.x.
    1. Kugelman A., Reichman B., Chistyakov I., Boyko V., Levitski O., Lerner-Geva L., Riskin A., Bader D., Israel Neonatal Network Postdischarge infant mortality among very low birth weight infants: A population-based study. Pediatrics. 2007;120:e788–e794. doi: 10.1542/peds.2006-3765.
    1. Piecuch R.E., Leonard C.H., Clyman R.I., Cooper B.A. Risk factors associated with infant death among very low birth weight infants after discharge from an intensive care nursery. J. Dev. Behav. Pediatr. 1998;19:84–88. doi: 10.1097/00004703-199804000-00004.
    1. Moyer-Mileur L.J., Nielson D.W., Pfeffer K.D., Witte M.K., Chapman D.L. Eliminating sleep-associated hypoxemia improves growth in infants with bronchopulmonary dysplasia. Pediatrics. 1996;98:779–783.
    1. McGrath-Morrow S.A., Ryan T., McGinley B.M., Okelo S.O., Sterni L.M., Collaco J.M. Polysomnography in preterm infants and children with chronic lung disease. Pediatr. Pulmonol. 2012;47:172–179. doi: 10.1002/ppul.21522.
    1. Eklund J.M., Fontana N., Pugh J.E., Mcgregor C., Yielder P., James A.G., Keyzers M., Hahn C., McNamara P. Automated Sleep-Wake Detection in Neonates from Cerebral Function Monitor Signals; Proceedings of the IEEE 27th International Symposium on Computer-Based Medical Systems; New York, NY, USA. 27–29 May 2014.
    1. Scher M.S., Steppe D.A., Beggarly M.E., Salerno D.G., Banks D.L. Neonatal EEG-sleep disruption mimicking hypoxic-ischemic encephalopathy after intrapartum asphyxia. Sleep Med. 2002;3:411–415. doi: 10.1016/S1389-9457(02)00071-0.
    1. Thoresen M., Hellström-Westas L., Liu X., De Vries L.S. Effect of hypothermia on amplitude-integrated electroencephalogram in infants with asphyxia. Pediatrics. 2010;126:e131–e139. doi: 10.1542/peds.2009-2938.
    1. Ter Horst H.J., Mud M., Roofthooft M.T., Bos A.F. Amplitude integrated electroencephalographic activity in infants with congenital heart disease before surgery. Early Hum. Dev. 2010;86:759–764. doi: 10.1016/j.earlhumdev.2010.08.028.
    1. Mulkey S.B., Yap V.L., Bai S., Ramakrishnaiah R.H., Glasier C.M., Bornemeier R.A., Schmitz M.L., Bhutta A.T. Amplitude-integrated EEG in newborns with critical congenital heart disease predicts preoperative brain magnetic resonance imaging findings. Pediatr. Neurol. 2015;52:599–605. doi: 10.1016/j.pediatrneurol.2015.02.026.
    1. Pinto F., Torrioli M.G., Casella G., Tempesta E., Fundarò C. Sleep in babies born to chronically heroin addicted mothers. A follow up study. Drug Alcohol Depend. 1988;21:43–47. doi: 10.1016/0376-8716(88)90009-9.
    1. O’Brien C.M., Jeffery H.E. Sleep deprivation, disorganization and fragmentation during opiate withdrawal in newborns. J. Paediatr. Child Health. 2002;38:66–71. doi: 10.1046/j.1440-1754.2002.00724.x.
    1. Dinges D.F., Davis M.M., Glass P. Fetal exposure to narcotics: Neonatal sleep as a measure of nervous system disturbance. Science. 1980;209:619–621. doi: 10.1126/science.7190326.
    1. Olischar M., Shany E., Aygün C., Azzopardi D., Hunt R.W., Toet M.C., Hamosh A., De Vries L.S., Hellström-Westas L., Theda C. Amplitude-integrated electroencephalography in newborns with inborn errors of metabolism. Neonatology. 2012;102:203–211. doi: 10.1159/000339567.
    1. Feldman R., Weller A., Sirota L., Eidelman A.I. Skin-to-Skin contact (Kangaroo care) promotes self-regulation in premature infants: Sleep-wake cyclicity, arousal modulation, and sustained exploration. Dev. Psychol. 2002;38:194–207. doi: 10.1037/0012-1649.38.2.194.
    1. Baley J. Skin-to-skin care for term and preterm infants in the neonatal ICU. Pediatrics. 2015;136 doi: 10.1542/peds.2015-2335.
    1. Juneau A.L., Aita M., Heon M. Review and critical analysis of massage studies for term and preterm infants. Neonatal Netw. 2015;34:165–177. doi: 10.1891/0730-0832.34.3.165.
    1. Standley J. Music therapy research in the NICU: An updated meta-analysis. Neonatal Netw. 2012;31:311–316. doi: 10.1891/0730-0832.31.5.311.
    1. Van der Heijden M.J., Araghi S.O., Jeekel J., Reiss I.K.M., Hunink M.G.M., Van Dijk M. Do hospitalized premature infants benefit from music interventions? A systematic review of randomized controlled trials. PLoS ONE. 2016;11:e0161848. doi: 10.1371/journal.pone.0161848.
    1. Kurinczuk J.J., White-Koning M., Badawi N. Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy. Early Hum. Dev. 2010;86:329–338. doi: 10.1016/j.earlhumdev.2010.05.010.
    1. Vannucci R.C. Hypoxic-ischemic encephalopathy. Am. J. Perinatol. 2000;17:113–120. doi: 10.1055/s-2000-9293.
    1. Azzopardi D.V., Strohm B., Edwards A.D., Dyet L., Halliday H.L., Juszczak E., Kapellou O., Levene M., Marlow N., Porter E., et al. Moderate hypothermia to treat perinatal asphyxial encephalopathy. N. Engl. J. Med. 2009;361:1349–1358. doi: 10.1056/NEJMoa0900854.
    1. Gluckman P.D., Wyatt J.S., Azzopardi D., Ballard R., Edwards A.D., Ferriero D.M., Polin R.A., Robertson C.M., Thoresen M., Whitelaw A., et al. Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: Multicentre randomised trial. Lancet. 2005;365:663–670. doi: 10.1016/S0140-6736(05)17946-X.
    1. Shankaran S., Laptook A.R., Ehrenkranz R.A., Tyson J.E., McDonald S.A., Donovan E.F., Fanaroff A.A., Poole W.K., Wright L.L., Higgins R.D., et al. Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N. Engl. J. Med. 2005;353:1574–1584. doi: 10.1056/NEJMcps050929.
    1. Osredkar D., Toet M.C., Van Rooij L.G., Van Huffelen A.C., Groenendaal F., De Vries L.S. Sleep-wake cycling on amplitude-integrated electroencephalography in term newborns with hypoxic-ischemic encephalopathy. Pediatrics. 2005;115:327–332. doi: 10.1542/peds.2004-0863.
    1. Verschuren O., Gorter J.W., Pritchard-Wiart L. Sleep: An underemphasized aspect of health and development in neurorehabilitation. Early Hum. Dev. 2017 doi: 10.1016/j.earlhumdev.2017.07.006.
    1. Korotchikova I., Connolly S., Ryan C.A., Murray D.M., Temko A., Greene B.R., Boylan G.B. EEG in the healthy term newborn within 12 hours of birth. Clin. Neurophysiol. 2009;120:1046–1053. doi: 10.1016/j.clinph.2009.03.015.
    1. Korotchikova I., Stevenson N.J., Livingstone V., Ryan C.A., Boylan G.B. Sleep-wake cycle of the healthy term newborn infant in the immediate postnatal period. Clin. Neurophysiol. 2016;127:2095–2101. doi: 10.1016/j.clinph.2015.12.015.
    1. Kocherlakota P. Neonatal abstinence syndrome. Pediatrics. 2014;134:e547–e561. doi: 10.1542/peds.2013-3524.
    1. Zeskind P.S., Stephens L.E. Maternal selective serotonin reuptake inhibitor use during pregnancy and newborn neurobehavior. Pediatrics. 2004;113:368–375. doi: 10.1542/peds.113.2.368.
    1. Patrick S.W., Schumacher R.E., Benneyworth B.D., Krans E.E., McAllister J.M., Davis M.M. Neonatal abstinence syndrome and associated health care expenditures: United States, 2000–2009. JAMA. 2012;307:1934–1940. doi: 10.1001/jama.2012.3951.
    1. Napolitano A., Theophilopoulos D., Seng S.K., Calhoun D.A. Pharmacologic management of neonatal abstinence syndrome in a community hospital. Clin. Obstet. Gynecol. 2013;56:193–201. doi: 10.1097/GRF.0b013e31827adf91.
    1. Kommers D.R., Joshi R., Van Pul C., Atallah L., Feijs L., Oei G., Bambang Oetomo S., Andriessen P. Features of heart rate variability capture regulatory changes during kangaroo care in preterm infants. J. Pediatr. 2017;182:92–98.e1. doi: 10.1016/j.jpeds.2016.11.059.
    1. Feldman R., Eidelman A.I. Skin-to-skin contact (Kangaroo Care) accelerates autonomic and neurobehavioural maturation in preterm infants. Dev. Med. Child Neurol. 2003;45:274–281. doi: 10.1111/j.1469-8749.2003.tb00343.x.
    1. Field T., Diego M., Hernandez-Reif M. Preterm infant massage therapy research: A review. Infant Behav. Dev. 2010;33:115–124. doi: 10.1016/j.infbeh.2009.12.004.
    1. Vickers A., Ohlsson A., Lacy J.B., Horsley A. Massage for promoting growth and development of preterm and/or low birth-weight infants. Cochrane Database Syst. Rev. 2004 doi: 10.1002/14651858.CD000390.pub2.
    1. Morag I., Ohlsson A. Cycled light in the intensive care unit for preterm and low birth weight infants. Cochrane Database Syst. Rev. 2016 doi: 10.1002/14651858.CD006982.pub2.
    1. Kuhn P., Zores C., Langlet C., Escande B., Astruc D., Dufour A. Moderate acoustic changes can disrupt the sleep of very preterm infants in their incubators. Acta Paediatr. 2013;102:949–954. doi: 10.1111/apa.12330.
    1. Brown G. NICU noise and the preterm infant. Neonatal Netw. 2009;28:165–173. doi: 10.1891/0730-0832.28.3.165.
    1. Curzi-Dascalova L., Figueroa J.M., Eiselt M., Christova E., Virassamy A., D’Allest A.M., Guimarâes H., Gaultier C., Dehan M. Sleep state organization in premature infants of less than 35 weeks’ gestational age. Pediatr. Res. 1993;34:624–628. doi: 10.1203/00006450-199311000-00013.
    1. Fetters L., Huang H.H. Motor development and sleep, play, and feeding positions in very-low-birthweight infants with and without white matter disease. Dev. Med. Child Neurol. 2007;49:807–813. doi: 10.1111/j.1469-8749.2007.00807.x.
    1. Dudink J., Van den Hoogen A. Assessing, improving and utilizing sleep in high risk neonates. Early Hum. Dev. 2017 doi: 10.1016/j.earlhumdev.2017.07.001.
    1. Smith S.L., Haley S., Slater H., Moyer-Mileur L.J. Heart rate variability during caregiving and sleep after massage therapy in preterm infants. Early Hum. Dev. 2013;89:525–529. doi: 10.1016/j.earlhumdev.2013.01.004.

Source: PubMed

3
Prenumerera