Impact of Amoxicillin-Clavulanate followed by Autologous Fecal Microbiota Transplantation on Fecal Microbiome Structure and Metabolic Potential

Christopher Bulow, Amy Langdon, Tiffany Hink, Meghan Wallace, Kimberly A Reske, Sanket Patel, Xiaoqing Sun, Sondra Seiler, Susan Jones, Jennie H Kwon, C A Burnham, Gautam Dantas, Erik R Dubberke, Christopher Bulow, Amy Langdon, Tiffany Hink, Meghan Wallace, Kimberly A Reske, Sanket Patel, Xiaoqing Sun, Sondra Seiler, Susan Jones, Jennie H Kwon, C A Burnham, Gautam Dantas, Erik R Dubberke

Abstract

Strategies to prevent multidrug-resistant organism (MDRO) infections are scarce, but autologous fecal microbiota transplantation (autoFMT) may limit gastrointestinal MDRO expansion. AutoFMT involves banking one's feces during a healthy state for later use in restoring gut microbiota following perturbation. This pilot study evaluated the effect of autoFMT on gastrointestinal microbiome taxonomic composition, resistance gene content, and metabolic capacity after exposure to amoxicillin-clavulanic acid (Amox-Clav). Ten healthy participants were enrolled. All received 5 days of Amox-Clav. Half were randomized to autoFMT, derived from stool collected pre-antimicrobial exposure, by enema, and half to saline enema. Participants submitted stool samples pre- and post-Amox-Clav and enema and during a 90-day follow-up period. Shotgun metagenomic sequencing revealed taxonomic composition, resistance gene content, and metabolic capacity. Amox-Clav significantly altered gut taxonomic composition in all participants (n = 10, P < 0.01); however, only three participants exhibited major changes at the phylum level following exposure. In the cohort as a whole, beta-lactamase genes were enriched following Amox-Clav (P < 0.05), and predicted metabolic capacity was significantly altered (P < 0.01). Species composition, metabolic capacity, and beta-lactamase abundance returned to pre-antimicrobial exposure state 7 days after either autoFMT or saline enema (P > 0.05, compared to enrollment). Alterations to microbial metabolic capacity occurred following antimicrobial exposure even in participants without substantial taxonomic disruption, potentially creating open niches for pathogen colonization. Our findings suggest that metabolic potential is an important consideration for complete assessment of antimicrobial impact on the microbiome. AutoFMT was well tolerated and may have contributed to phylogenetic recovery. (This study has been registered at ClinicalTrials.gov under identifier NCT02046525.)IMPORTANCE The spread of multidrug resistance among pathogenic organisms threatens the efficacy of antimicrobial treatment options. The human gut serves as a reservoir for many drug-resistant organisms and their resistance genes, and perturbation of the gut microbiome by antimicrobial exposure can open metabolic niches to resistant pathogens. Once established in the gut, antimicrobial-resistant bacteria can persist even after antimicrobial exposure ceases. Strategies to prevent multidrug-resistant organism (MDRO) infections are scarce, but autologous fecal microbiota transplantation (autoFMT) may limit gastrointestinal MDRO expansion. AutoFMT involves banking one's feces during a healthy state for later use in restoring gut microbiota following perturbation. This pilot study evaluated the effect of amoxicillin-clavulanic acid (Amox-Clav) exposure and autoFMT on gastrointestinal microbiome taxonomic composition, resistance gene content, and metabolic capacity. Importantly, we found that metabolic capacity was perturbed even in cases where gross phylogeny remained unchanged and that autoFMT was safe and well tolerated.

Keywords: antimicrobial resistance; fecal microbiota transplantation; metagenomics; microbiome; multidrug resistance.

Copyright © 2018 Bulow et al.

Figures

FIG 1
FIG 1
Taxonomic composition over time was determined by (A) metagenomic sequencing and (B) qualitative culturomics. (C) Shannon index of diversity was calculated using species data from metagenomic sequencing. Species composition was significantly different after Amox-Clav by type II Adonis test of Bray-Curtis distance (P < 0.01). The most obvious change post-Amox-Clav was a Proteobacteria bloom in subject 8. Numbers preceded by “S” at the top of columns indicate participant identification number.
FIG 2
FIG 2
Taxonomic composition and predicted absolute abundance over time by quantitative culturomics. (A) Aerobic and (B) anaerobic cultures were quantified. Note that the aerobic cultures were less dilute, allowing greater sensitivity but a lower upper limit of detection. Also note that the relative abundance in Fig. 1B was calculated using growth observed at the greatest dilution for each species while here species may appear in both anaerobic and aerobic cultures.
FIG 3
FIG 3
Beta-lactamase genes were significantly enriched after Amox-Clav (two-tailed t test, P = 0.0017). Participants randomized to autoFMT (red) and saline (gray) both returned to baseline by day 90. Participant numbers are noted at the beginning and end of each line.
FIG 4
FIG 4
Enrichment of resistance genes by mechanism was determined by comparing normalized counts (RPKM) post-Amox-Clav to enrollment. Beta-lactamases (black) were most enriched and formed a majority of the antibiotic inactivation enzymes enriched. Efflux pumps were also enriched, and functional metagenomic selections suggest cooccurrence of beta-lactamases and efflux pumps on a mobile element.
FIG 5
FIG 5
Principal coordinate analysis (PCA) of metabolic pathway data (IMC) from participants without obvious taxonomic disturbances (all participants excluding 5 and 8). IMC was derived from metagenomic sequencing data. Normally distributed confidence ellipses are shown. Post-Amox-Clav samples have significantly different IMCs than enrollment samples by type II Adonis test of Bray-Curtis distance (P < 0.01). This is true with or without participants 5 and 8. IMC returned to baseline state by 90 days with saline or autoFMT at similar rates.

References

    1. World Health Organization. 2014. Antimicrobial resistance: global report on surveillance. World Health Organization, Geneva, Switzerland.
    1. Munoz-Price LS, De La Cuesta C, Adams S, Wyckoff M, Cleary T, McCurdy SP, Huband MD, Lemmon MM, Lescoe M, Dibhajj FB, Hayden MK, Lolans K, Quinn JP. 2010. Successful eradication of a monoclonal strain of Klebsiella pneumoniae during a K. pneumoniae carbapenemase-producing K. pneumoniae outbreak in a surgical intensive care unit in Miami, Florida. Infect Control Hosp Epidemiol 31:1074–1077. doi:10.1086/656243.
    1. Roghmann MC, Qaiyumi S, Schwalbe R, Morris JG Jr.. 1997. Natural history of colonization with vancomycin-resistant Enterococcus faecium. Infect Control Hosp Epidemiol 18:679–680. doi:10.2307/30141505.
    1. Donskey CJ, Hoyen CK, Das SM, Helfand MS, Hecker MT. 2002. Recurrence of vancomycin-resistant Enterococcus stool colonization during antibiotic therapy. Infect Control Hosp Epidemiol 23:436–440. doi:10.1086/502081.
    1. Bhalla A, Pultz NJ, Ray AJ, Hoyen CK, Eckstein EC, Donskey CJ. 2003. Antianaerobic antibiotic therapy promotes overgrowth of antibiotic-resistant, gram-negative bacilli and vancomycin-resistant enterococci in the stool of colonized patients. Infect Control Hosp Epidemiol 24:644–649. doi:10.1086/502267.
    1. Zimmerman FS, Assous MV, Bdolah-Abram T, Lachish T, Yinnon AM, Wiener-Well Y. 2013. Duration of carriage of carbapenem-resistant Enterobacteriaceae following hospital discharge. Am J Infect Control 41:190–194. doi:10.1016/j.ajic.2012.09.020.
    1. Schechner V, Kotlovsky T, Tarabeia J, Kazma M, Schwartz D, Navon-Venezia S, Carmeli Y. 2011. Predictors of rectal carriage of carbapenem-resistant Enterobacteriaceae (CRE) among patients with known CRE carriage at their next hospital encounter. Infect Control Hosp Epidemiol 32:497–503. doi:10.1086/659762.
    1. Sethi AK, Al-Nassir WN, Nerandzic MM, Bobulsky GS, Donskey CJ. 2010. Persistence of skin contamination and environmental shedding of Clostridium difficile during and after treatment of C. difficile infection. Infect Control Hosp Epidemiol 31:21–27. doi:10.1086/649016.
    1. Forslund K, Sunagawa S, Kultima JR, Mende DR, Arumugam M, Typas A, Bork P. 2013. Country-specific antibiotic use practices impact the human gut resistome. Genome Res 23:1163–1169. doi:10.1101/gr.155465.113.
    1. Scarpignato C. 2005. Rifaximin, a poorly absorbed antibiotic: pharmacology and clinical use. Karger, Basel, Switzerland.
    1. Rieg S, Kupper MF, de With K, Serr A, Bohnert JA, Kern WV. 2015. Intestinal decolonization of Enterobacteriaceae producing extended-spectrum beta-lactamases (ESBL): a retrospective observational study in patients at risk for infection and a brief review of the literature. BMC Infect Dis 15:475. doi:10.1186/s12879-015-1225-0.
    1. Vollaard EJ, Clasener HA. 1994. Colonization resistance. Antimicrob Agents Chemother 38:409–414. doi:10.1128/AAC.38.3.409.
    1. van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM, Visser CE, Kuijper EJ, Bartelsman JF, Tijssen JG, Speelman P, Dijkgraaf MG, Keller JJ. 2013. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 368:407–415. doi:10.1056/NEJMoa1205037.
    1. Gough E, Shaikh H, Manges AR. 2011. Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection. Clin Infect Dis 53:994–1002. doi:10.1093/cid/cir632.
    1. Davido B, Dinh A, Deconinck L, de Truchis P. 2017. Fecal microbiota transplantation and urinary tract infection: an interesting approach. Clin Infect Dis . doi:10.1093/cid/cix788.
    1. Crum-Cianflone NF, Sullivan E, Ballon-Landa G. 2015. Fecal microbiota transplantation and successful resolution of multidrug-resistant-organism colonization. J Clin Microbiol 53:1986–1989. doi:10.1128/JCM.00820-15.
    1. Buffie CG, Pamer EG. 2013. Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rev Immunol 13:790–801. doi:10.1038/nri3535.
    1. Gupta S, Allen-Vercoe E, Petrof EO. 2016. Fecal microbiota transplantation: in perspective. Therap Adv Gastroenterol 9:229–239. doi:10.1177/1756283X15607414.
    1. Hamilton MJ, Weingarden AR, Sadowsky MJ, Khoruts A. 2012. Standardized frozen preparation for transplantation of fecal microbiota for recurrent Clostridium difficile infection. Am J Gastroenterol 107:761–767. doi:10.1038/ajg.2011.482.
    1. Hamilton MJ, Weingarden AR, Unno T, Khoruts A, Sadowsky MJ. 2013. High-throughput DNA sequence analysis reveals stable engraftment of gut microbiota following transplantation of previously frozen fecal bacteria. Gut Microbes 4:125–135. doi:10.4161/gmic.23571.
    1. Chang JY, Antonopoulos DA, Kalra A, Tonelli A, Khalife WT, Schmidt TM, Young VB. 2008. Decreased diversity of the fecal microbiome in recurrent Clostridium difficile-associated diarrhea. J Infect Dis 197:435–438. doi:10.1086/525047.
    1. Leung V, Vincent C, Edens TJ, Miller M, Manges AR. 2018. Antimicrobial resistance gene acquisition and depletion following fecal microbiota transplantation for recurrent Clostridium difficile infection. Clin Infect Dis 66:456–457. doi:10.1093/cid/cix821.
    1. Bakken JS, Borody T, Brandt LJ, Brill JV, Demarco DC, Franzos MA, Kelly C, Khoruts A, Louie T, Martinelli LP, Moore TA, Russell G, Surawicz C, Fecal Microbiota Transplantation Workgroup. 2011. Treating Clostridium difficile infection with fecal microbiota transplantation. Clin Gastroenterol Hepatol 9:1044–1049. doi:10.1016/j.cgh.2011.08.014.
    1. Khoruts A, Dicksved J, Jansson JK, Sadowsky MJ. 2010. Changes in the composition of the human fecal microbiome after bacteriotherapy for recurrent Clostridium difficile-associated diarrhea. J Clin Gastroenterol 44:354–360. doi:10.1097/MCG.0b013e3181c87e02.
    1. Meighani A, Hart BR, Mittal C, Miller N, John A, Ramesh M. 2016. Predictors of fecal transplant failure. Eur J Gastroenterol Hepatol 28:826–830. doi:10.1097/MEG.0000000000000614.
    1. Fischer M, Kao D, Mehta SR, Martin T, Dimitry J, Keshteli AH, Cook GK, Phelps E, Sipe BW, Xu H, Kelly CR. 2016. Predictors of early failure after fecal microbiota transplantation for the therapy of Clostridium difficile infection: a multicenter study. Am J Gastroenterol 111:1024–1031. doi:10.1038/ajg.2016.180.
    1. Seekatz AM, Theriot CM, Rao K, Chang YM, Freeman AE, Kao JY, Young VB. 2018. Restoration of short chain fatty acid and bile acid metabolism following fecal microbiota transplantation in patients with recurrent Clostridium difficile infection. Anaerobe 53:64–73. doi:10.1016/j.anaerobe.2018.04.001.
    1. Mintz M, Khair S, Grewal S, LaComb JF, Park J, Channer B, Rajapakse R, Bucobo JC, Buscaglia JM, Monzur F, Chawla A, Yang J, Robertson CE, Frank DN, Li E. 2018. Longitudinal microbiome analysis of single donor fecal microbiota transplantation in patients with recurrent Clostridium difficile infection and/or ulcerative colitis. PLoS One 13:e0190997. doi:10.1371/journal.pone.0190997.
    1. O’Toole PW, Flemer B. 2017. From culture to high-throughput sequencing and beyond: a layperson’s guide to the “omics” and diagnostic potential of the microbiome. Gastroenterol Clin North Am 46:9–17. doi:10.1016/j.gtc.2016.09.003.
    1. Liu T, Yang Z, Zhang X, Han N, Yuan J, Cheng Y. 2017. 16S rDNA analysis of the effect of fecal microbiota transplantation on pulmonary and intestinal flora. 3 Biotech 7:370. doi:10.1007/s13205-017-0997-x.
    1. Park J, Gasparrini AJ, Reck MR, Symister CT, Elliott JL, Vogel JP, Wencewicz TA, Dantas G, Tolia NH. 2017. Plasticity, dynamics, and inhibition of emerging tetracycline resistance enzymes. Nat Chem Biol 13:730–736. doi:10.1038/nchembio.2376.
    1. Forsberg KJ, Patel S, Wencewicz TA, Dantas G. 2015. The tetracycline destructases: a novel family of tetracycline-inactivating enzymes. Chem Biol 22:888–897. doi:10.1016/j.chembiol.2015.05.017.
    1. Dethlefsen L, Huse S, Sogin ML, Relman DA. 2008. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6:e280. doi:10.1371/journal.pbio.0060280.
    1. Dethlefsen L, Relman DA. 2011. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A 108(Suppl 1):4554–4561. doi:10.1073/pnas.1000087107.
    1. De La Cochetière MF, Durand T, Lepage P, Bourreille A, Galmiche JP, Doré J. 2005. Resilience of the dominant human fecal microbiota upon short-course antibiotic challenge. J Clin Microbiol 43:5588–5592. doi:10.1128/JCM.43.11.5588-5592.2005.
    1. Young VB, Schmidt TM. 2004. Antibiotic-associated diarrhea accompanied by large-scale alterations in the composition of the fecal microbiota. J Clin Microbiol 42:1203–1206. doi:10.1128/JCM.42.3.1203-1206.2004.
    1. Human Microbiome Project Consortium. 2012. Structure, function and diversity of the healthy human microbiome. Nature 486:207–214. doi:10.1038/nature11234.
    1. Gillespie D, Hood K, Bayer A, Carter B, Duncan D, Espinasse A, Evans M, Nuttall J, Stanton H, Acharjya A, Allen S, Cohen D, Groves S, Francis N, Howe R, Johansen A, Mantzourani E, Thomas-Jones E, Toghill A, Wood F, Wigglesworth N, Wootton M, Butler CC. 2015. Antibiotic prescribing and associated diarrhoea: a prospective cohort study of care home residents. Age Ageing 44:853–860. doi:10.1093/ageing/afv072.
    1. Cammarota G, Ianiro G, Tilg H, Rajilić-Stojanović M, Kump P, Satokari R, Sokol H, Arkkila P, Pintus C, Hart A, Segal J, Aloi M, Masucci L, Molinaro A, Scaldaferri F, Gasbarrini G, Lopez-Sanroman A, Link A, de Groot P, de Vos WM, Högenauer C, Malfertheiner P, Mattila E, Milosavljević T, Nieuwdorp M, Sanguinetti M, Simren M, Gasbarrini A, The European FMT Working Group. 2017. European consensus conference on faecal microbiota transplantation in clinical practice. Gut 66:569–580. doi:10.1136/gutjnl-2016-313017.
    1. Quraishi MN, Widlak M, Bhala N, Moore D, Price M, Sharma N, Iqbal TH. 2017. Systematic review with meta-analysis: the efficacy of faecal microbiota transplantation for the treatment of recurrent and refractory Clostridium difficile infection. Aliment Pharmacol Ther 46:479–493. doi:10.1111/apt.14201.
    1. Hink T, Burnham CA, Dubberke ER. 2013. A systematic evaluation of methods to optimize culture-based recovery of Clostridium difficile from stool specimens. Anaerobe 19:39–43. doi:10.1016/j.anaerobe.2012.12.001.
    1. Quince C, Walker AW, Simpson JT, Loman NJ, Segata N. 2017. Shotgun metagenomics, from sampling to analysis. Nat Biotechnol 35:833–844. doi:10.1038/nbt.3935.
    1. Vernocchi P, Del Chierico F, Putignani L. 2016. Gut microbiota profiling: metabolomics based approach to unravel compounds affecting human health. Front Microbiol 7:1144. doi:10.3389/fmicb.2016.01144.
    1. Yarygin K, Tyakht A, Larin A, Kostryukova E, Kolchenko S, Bitner V, Alexeev D. 2017. Abundance profiling of specific gene groups using precomputed gut metagenomes yields novel biological hypotheses. PLoS One 12:e0176154. doi:10.1371/journal.pone.0176154.
    1. Kaminski J, Gibson MK, Franzosa EA, Segata N, Dantas G, Huttenhower C. 2015. High-specificity targeted functional profiling in microbial communities with ShortBRED. PLoS Comput Biol 11:e1004557. doi:10.1371/journal.pcbi.1004557.
    1. Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P, Tsang KK, Lago BA, Dave BM, Pereira S, Sharma AN, Doshi S, Courtot M, Lo R, Williams LE, Frye JG, Elsayegh T, Sardar D, Westman EL, Pawlowski AC, Johnson TA, Brinkman FS, Wright GD, McArthur AG. 2017. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res 45:D566–D573. doi:10.1093/nar/gkw1004.
    1. Moore AM, Patel S, Forsberg KJ, Wang B, Bentley G, Razia Y, Qin X, Tarr PI, Dantas G. 2013. Pediatric fecal microbiota harbor diverse and novel antibiotic resistance genes. PLoS One 8:e78822. doi:10.1371/journal.pone.0078822.
    1. Pehrsson EC, Tsukayama P, Patel S, Mejia-Bautista M, Sosa-Soto G, Navarrete KM, Calderon M, Cabrera L, Hoyos-Arango W, Bertoli MT, Berg DE, Gilman RH, Dantas G. 2016. Interconnected microbiomes and resistomes in low-income human habitats. Nature 533:212–216. doi:10.1038/nature17672.
    1. Forsberg KJ, Reyes A, Wang B, Selleck EM, Sommer MO, Dantas G. 2012. The shared antibiotic resistome of soil bacteria and human pathogens. Science 337:1107–1111. doi:10.1126/science.1220761.
    1. Zhu W, Lomsadze A, Borodovsky M. 2010. Ab initio gene identification in metagenomic sequences. Nucleic Acids Res 38:e132. doi:10.1093/nar/gkq275.
    1. Finn RD, Clements J, Eddy SR. 2011. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39:W29–W37. doi:10.1093/nar/gkr367.
    1. Gibson MK, Forsberg KJ, Dantas G. 2015. Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology. ISME J 9:207–216. doi:10.1038/ismej.2014.106.
    1. Abubucker S, Segata N, Goll J, Schubert AM, Izard J, Cantarel BL, Rodriguez-Mueller B, Zucker J, Thiagarajan M, Henrissat B, White O, Kelley ST, Methe B, Schloss PD, Gevers D, Mitreva M, Huttenhower C. 2012. Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput Biol 8:e1002358. doi:10.1371/journal.pcbi.1002358.
    1. Batut B. 2016. Group abundances of UniRef50 gene families obtained with HUMAnN2 to Gene Ontology (GO) slim terms with relative abundances: release v1.2.0 (version v1.2.0). Zenodo. doi:10.5281/zenodo.50086.
    1. Kursa MB, Rudnicki WR. 2010. Feature selection with the Boruta package. J Stat Softw 36. doi:10.18637/jss.v036.i11.
    1. Integrative HMP (iHMP) Research Network Consortium. 2014. The Integrative Human Microbiome Project: dynamic analysis of microbiome-host omics profiles during periods of human health and disease. Cell Host Microbe 16:276–289. doi:10.1016/j.chom.2014.08.014.

Source: PubMed

3
Prenumerera