Treatment of chronic hepatitis B in sub-Saharan Africa: 1-year results of a pilot program in Ethiopia

Hailemichael Desalegn, Hanna Aberra, Nega Berhe, Bitsatab Mekasha, Kathrine Stene-Johansen, Henrik Krarup, Andre Puntervold Pereira, Svein Gunnar Gundersen, Asgeir Johannessen, Hailemichael Desalegn, Hanna Aberra, Nega Berhe, Bitsatab Mekasha, Kathrine Stene-Johansen, Henrik Krarup, Andre Puntervold Pereira, Svein Gunnar Gundersen, Asgeir Johannessen

Abstract

Background: The World Health Organization has set an ambitious goal of eliminating viral hepatitis as a major public health threat by 2030. However, in sub-Saharan Africa, antiviral treatment of chronic hepatitis B (CHB) is virtually unavailable. Herein, we present the 1-year results of a pilot CHB treatment program in Ethiopia.

Methods: At a public hospital in Addis Ababa, CHB patients were treated with tenofovir disoproxil fumarate based on simplified eligibility criteria. Baseline assessment included liver function tests, viral markers, and transient elastography (Fibroscan). Changes in laboratory markers were analyzed using Wilcoxon signed-rank tests. Adherence to therapy was measured by pharmacy refill data.

Results: Out of 1303 patients, 328 (25.2%) fulfilled the treatment criteria and 254 (19.5%) had started tenofovir disoproxil fumarate therapy prior to September 1, 2016. Of the patients who started therapy, 30 (11.8%) died within the first year of follow-up (28 of whom had decompensated cirrhosis), 9 (3.5%) self-stopped treatment, 7 (2.8%) were lost to follow-up, and 4 (1.6%) were transferred out. In patients who completed 12 months of treatment, the median Fibroscan value declined from 12.8 to 10.4 kPa (p < 0.001), 172 of 202 (85.1%) patients with available pharmacy refill data had taken ≥ 95% of their tablets, and 161 of 189 (85.2%) patients with viral load results had suppressed viremia. Virologic failure (≥ 69 IU/mL) at 12 months was associated with high baseline HBV viral load (> 1,000,000 IU/mL; adjusted OR 2.41; 95% CI 1.04-5.55) and suboptimal adherence (< 95%; adjusted OR 3.43, 95% CI 1.33-8.88).

Conclusions: This pilot program demonstrated that antiviral therapy of CHB can be realized in Ethiopia with good clinical and virologic response. Early mortality was high in patients with decompensated cirrhosis, underscoring the need for earlier detection of hepatitis B virus infection and timely initiation of treatment, prior to the development of irreversible complications, in sub-Saharan Africa.

Trial registration: NCT02344498 (ClinicalTrials.gov identifier). Registered 16 January 2015.

Keywords: Antiviral therapy; Epidemiology; Resource-limited settings; Viral hepatitis.

Conflict of interest statement

Ethics, consent and permissions

The study was approved by the Regional Committee for Medical and Health Research Ethics in Norway and the National Research Ethics Review Committee in Ethiopia, as well as the pertinent institutional ethical review boards. Written informed consent was obtained from all study participants.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Profile of the hepatitis B treatment program, Addis Ababa, Ethiopia. CHB chronic hepatitis B
Fig. 2
Fig. 2
Change in liver stiffness among patients who completed 12 months of hepatitis B treatment
Fig. 3
Fig. 3
Virologic response to therapy during the first 12 months of antiviral treatment

References

    1. World Health Organization . Hepatitis B Fact Sheet. Geneva: WHO; 2017.
    1. Stanaway JD, Flaxman AD, Naghavi M, et al. The global burden of viral hepatitis from 1990 to 2013: findings from the global burden disease study 2013. Lancet 2016;388:1081–1088.
    1. World Health Organization . Global Health Sector Strategy on Viral Hepatitis. Towards Ending Viral Hepatitis. Geneva: WHO; 2016.
    1. Liaw YF, Sung JJ, Chow WC, et al. Lamivudine for patients with chronic hepatitis B and advanced liver disease. N Engl J Med 2004;351:1521–1531.
    1. Kim WR, Loomba R, Berg T, et al. Impact of long-term tenofovir disoproxil fumarate on incidence of hepatocellular carcinoma in patients with chronic hepatitis B. Cancer 2015;121:3631–3638.
    1. Marcellin P, Gane E, Buti M. Regression of cirrhosis during treatment with tenofovir disoproxil fumarate for chronic hepatitis B: a 5-year open-label follow-up study. Lancet 2013;381:468–475.
    1. European Association for the Study of the Liver. EASL Clinical Practice Guidelines: management of chronic hepatitis B virus infection. J Hepatol 2012;57:167–185.
    1. World Health Organization . Global Hepatitis Report, 2017. Geneva: WHO; 2017.
    1. Lemoine M, Shimakawa Y, Njie R, et al. Acceptability and feasibility of a screen-and-treat programme for hepatitis B virus infection in The Gambia: the Prevention of Liver Fibrosis and Cancer in Africa (PROLIFICA) study. Lancet Glob Health 2016;4:e559–e567.
    1. Belyhun Y, Maier M, Mulu A, Diro E, Liebert UG. Hepatitis viruses in Ethiopia: a systematic review and meta-analysis. BMC Infect Dis 2016;16:761.
    1. Chon YE, Choi EH, Song KJ, et al. Performance of transient elastography for the staging of liver fibrosis in patients with chronic hepatitis B: a meta-analysis. PLoS One 2012;7:e44930.
    1. Lemoine M, Shimakawa Y, Nayagam S, et al. The gamma-glutamyl transpeptidase to platelet ratio (GPR) predicts significant liver fibrosis and cirrhosis in patients with chronic HBV infection in West Africa. Gut 2016;65:1369–1376.
    1. World Health Organization . Guidelines for the Prevention, Care and Treatment of Persons with Chronic Hepatitis B Infection. Geneva: WHO; 2015.
    1. Sangeda RZ, Mosha F, Prosperi M, et al. Pharmacy refill adherence outperforms self-reported methods in predicting HIV therapy outcome in resource-limited settings. BMC Public Health 2014;14:1035.
    1. Boursier J, Konate A, Gorea G, et al. Reproducibility of liver stiffness measurement by ultrasonographic elastometry. Clin Gastroenterol Hepatol 2008;6:1263–1269.
    1. Marcellin P, Heathcote J, Buti M, et al. Tenofovir disoproxil fumarate versus adefovir dipivoxil for chronic hepatitis B. JAMA 2008;359:2442–2455.
    1. von Elm E, Altman DG, Egger M, et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet 2007;370:1453–1457.
    1. Sanne I, Orrell C, Fox MP, et al. Nurse versus doctor management of HIV-infected patients receiving antiretroviral therapy (CIPRA-SA): a randomized non-inferiority trial. Lancet 2010;376:33–40.
    1. Shim JH, Lee HC, Kim KM, et al. Efficacy of entecavir in treatment-naive patients with hepatitis B virus-related decompensated cirrhosis. J Hepatol 2010;52:176–182.
    1. Pol S, Lampertico P. First-line treatment of chronic hepatitis B with entecavir or tenofovir in ‘real-life’ settings: from clinical trials to clinical practice. J Viral Hepat 2012;19:377–386.
    1. Goyal SK, Dixit VK, Shukla SK, et al. Prolonged use of tenofovir and entecavir in hepatitis B virus-related cirrhosis. Indian J Gastroenterol 2015;34:286–291.
    1. Hou JL, Jia JD, Wei L, et al. Efficacy and safety of entecavir in a heterogenous CHB population from a ‘real-world’ clinical practice setting in China. J Viral Hepat 2013;20:811–820.
    1. Petersen J, Heyne R, Mauss S, et al. Effectiveness and safety of tenofovir disoproxil fumarate in chronic hepatitis B: a 3-year prospective field practice study in Germany. Dig Dis Sci 2016;61:3061–3071.
    1. Ha NB, Ha NB, Garcia RT, et al. Medication nonadherence with long-term management of patients with hepatitis B e-antigen negative chronic hepatitis B. Dig Dis Sci 2011;56:2423–2431.
    1. Sogni P, Carrieri MP, Fontaine H, et al. The role of adherence in virological suppression in patients receiving anti-HBV analogues. Antivir Ther 2012;17:395–400.
    1. Liu Y, Corsa AC, Buti M, et al. No detectable resistance to tenofovir disoproxil fumarate in HBeAg+ and HBeAg- patients with chronic hepatitis B after 8 years of treatment. J Viral Hepat 2017;24:68–74.
    1. Mills EJ, Nachega JB, Buchan I, et al. Adherence to antiretroviral therapy in sub-Saharan Africa and North America: a meta-analysis. JAMA 2006;296:679–690.
    1. Desalegn H, Aberra H, Berhe N, Gundersen SG, Johannessen A. Are non-invasive fibrosis markers for chronic hepatitis B valid in sub-Saharan Africa? Liver Int 2017;37:1461–1467.
    1. Afdhal NH, Bacon BR, Patel K, et al. Accuracy of fibroscan, compared with histology, in analysis of liver fibrosis in patients with hepatitis B or C: a United States multicentre study. Clin Gastroenterol Hepatol 2015;13:772–779.
    1. Stene-Johansen K, Yaqoob N, Øverbø J, et al. Dried blood spots a reliable method for measurement of HBV viral load in resource-limited settings. PLoS One 2016;11:e0166201.

Source: PubMed

3
Prenumerera