Warfarin Anticoagulation Therapy in Caribbean Hispanics of Puerto Rico: A Candidate Gene Association Study

Karla Claudio-Campos, Aurora Labastida, Alga Ramos, Andrea Gaedigk, Jessicca Renta-Torres, Dariana Padilla, Giselle Rivera-Miranda, Stuart A Scott, Gualberto Ruaño, Carmen L Cadilla, Jorge Duconge-Soler, Karla Claudio-Campos, Aurora Labastida, Alga Ramos, Andrea Gaedigk, Jessicca Renta-Torres, Dariana Padilla, Giselle Rivera-Miranda, Stuart A Scott, Gualberto Ruaño, Carmen L Cadilla, Jorge Duconge-Soler

Abstract

Existing algorithms account for ~50% of observed variance in warfarin dose requirements after including common polymorphisms. However, they do not perform as well in populations other than Caucasians, in part because some ethno-specific genetic variants are overlooked. The objective of the present study was to identify genetic polymorphisms that can explain variability in warfarin dose requirements among Caribbean Hispanics of Puerto Rico. Next-Generation Sequencing of candidate genes CYP2C9 and VKORC1 and genotyping by DMET® Plus Assay of cardiovascular patients were performed. We also aimed at characterizing the genomic structure and admixture pattern of this study cohort. Our study used the Extreme Discordant Phenotype approach to perform a case-control association analysis. The CYP2C9 variant rs2860905, which was found in all the major haplotypes occurring in the Puerto Rican population, showed stronger association with warfarin sensitivity (<4 mg/day) than common variants CYP2C9*2 and CYP2C9*3. Although, CYP2C9*2 and CYP2C9*3 are separately contained within two of the haplotypes, 10 subjects with the sensitive phenotype were carriers of only the CYP2C9 rs2860905 variant. Other polymorphisms in CES2 and ABCB1 were found to be associated with warfarin resistance. Incorporation of rs2860905 in a regression model (R2 = 0.63, MSE = 0.37) that also includes additional genetics (i.e., VKORC1-1639 G>A; CYP2C9 rs1856908; ABCB1 c.IVS9-44A>G/ rs10276036; CES2 c.269-965A>G/ rs4783745) and non-genetic factors (i.e., hypertension, diabetes and age) showed better prediction of warfarin dose requirements than CYP2C9*2 and CYP2C9*3 combined (partial R2 = 0.132 vs. 0.023 and 0.007, respectively, p < 0.001). The genetic background of Puerto Ricans in the study cohort showed a tri-hybrid admixture pattern, with a slightly higher than expected contribution of Native American ancestry (25%). The genomic diversity of Puerto Ricans is highlighted by the presence of four different major haplotype blocks in the CYP2C9 locus. Although, our findings need further replication, this study contributes to the field by identifying novel genetic variants that increase predictability of stable warfarin dosing among Caribbean Hispanics.

Keywords: Caribbean Hispanics; admixture; genotyping; next-generation sequencing; pharmacogenetics; warfarin.

Figures

Figure 1
Figure 1
Histograms of them distribution of warfarin stable doses in (A) Puerto Ricans recruited from VACHS and (B) tested subcohort.
Figure 2
Figure 2
Overview of study methods and analyses. (a)See Duconge et al. PLoS ONE 2016. (b)AIMs stands for ancestral informative markers.
Figure 3
Figure 3
Single nucleotide variants (SNVs) at CYP2C9 associated with warfarin (A) sensitivity (<4 mg/day) and (B) resistance (>6 mg/day) identified with NGS. P-values correspond to case-control association test performed in Puerto Ricans of the present study but colored codes represent correlation of SNVs with rs2860905 among Hispanics from 1,000 Genomes (Puerto Ricans, Colombians, Mexican Americans and Peruvians).
Figure 4
Figure 4
Single nucleotide variants (SNVs) associated with warfarin (A) sensitivity (<4 mg/day) and (B) resistance (>6 mg/day) identified with DMET Plus array.
Figure 5
Figure 5
Representation of the most frequent haplotypes found within the region spanning CYP2C9 (chr10: 96694843 to 96750251) across Puerto Ricans in warfarin and parental populations from the 1000 Genomes Project (Caucasians, Africans and Asians). Each block represents a position within the haplotype (haplotypes 1-4, H1-4). Blue blocks indicate the presence of the variant allele for each of the positions while gray blocks indicate the presence of the wild-type allele. The green block is the presence of the variant rs2860905. Red blocks represent the variants CYP2C9*2 (rs1799853) and CYP2C9*3 (rs1057910). The data was obtained from the 1000 Genomes Project Phase 3 with phased genotypes.
Figure 6
Figure 6
Regression model for warfarin dose requirements among Puerto Ricans. The solid line depicts perfect prediction of the model. The stabilization dose refers to the dose given after three consecutive INRs values within the range (2–3 for most of the indications). The R2 value is adjusted. MAE and MSE stand for mean absolute error and mean standard error respectively.

References

    1. 1000 Genomes Project Consortium. Auton A., Brooks L. D., Durbin R. M., Garrison E. P., Kang H. M., et al. . (2015). A global reference for human genetic variation. Nature 526, 68–74. 10.1038/nature15393
    1. Ang L., Palakodeti V., Khalid A., Tsimikas S., Idrees Z., Tran P., et al. . (2008). Elevated plasma fibrinogen and diabetes mellitus are associated with lower inhibition of platelet reactivity with clopidogrel. J. Am. Coll. Cardiol. 52, 1052–1059. 10.1016/j.jacc.2008.05.054
    1. Ansell J., Hirsh J., Hylek E., Jacobson A., Crowther M., Palareti G. (2008). Pharmacology and management of the vitamin K antagonists: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest. 133(6 Suppl) 160S–198S. 10.1378/chest.08-0670
    1. Barrett J., Fry B., Maller J., Daly M. (2005). Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263–265. 10.1093/bioinformatics/bth457
    1. Bonifaz-Peña V., Contreras A. V., Struchiner C. J., Roela R. A., Furuya-Mazzotti T. K., Chammas R., et al. . (2014). Exploring the distribution of genetic markers of pharmacogenomics relevance in Brazilian and Mexican populations. PLoS ONE 9:e112640. 10.1371/journal.pone.0112640
    1. Bress A., Patel S. R., Perera M. A., Campbell R. T., Kittles R. A. (2012). Effect of NQO1 and CYP4F2 genotypes on warfarin dose requirements in Hispanic-Americans and African-Americans. Pharmacogenomics 13, 1925–1935. 10.2217/pgs.12.164
    1. Bryc K., Velez C., Karafet T., Moreno-Estrada A., Reynolds A., Auton A., et al. . (2010). Colloquium paper: genome-wide patterns of population structure and admixture among Hispanic/Latino populations. Proc. Natl. Acad. Sci. U.S.A. 107(Suppl. 2), 8954–8961. 10.1073/pnas.0914618107
    1. Bush W. S., Moore J. H. (2012). Chapter 11: Genome-wide association studies. PLoS Comput. Biol. 8:e1002822. 10.1371/journal.pcbi.1002822
    1. Caldwell M. D., Awad T., Johnson J. A., Gage B. F., Falkowski M., Gardina P., et al. . (2008). CYP4F2 genetic variant alters required warfarin dose. Blood 111, 4106–4112. 10.1182/blood-2007-11-122010
    1. Caronia D., Martin M., Sastre J., De La Torre J., García-Sáenz J. A., Alonso M. R., et al. . (2011). A polymorphism in the cytidine deaminase promoter predicts severe capecitabine-induced hand-foot syndrome. Clin. Cancer Res. 17, 2006–2013. 10.1158/1078-0432.CCR-10-1741
    1. Cavallari L. H., Momary K. M., Patel S. R., Shapiro N. L., Nutescu E., Viana M. A. G. (2011). Pharmacogenomics of warfarin dose requirements in Hispanics. Blood Cells Mol. Dis. 46, 147–150. 10.1016/j.bcmd.2010.11.005
    1. Cavallari L., Perera M. A. (2013). The future of warfarin pharmacogenetics in under-represented minority groups. Future Cardiol. 8, 563–576. 10.2217/fca.12.31
    1. Choonara I., Haynes B., Cholerton S., Breckenridge A., Park B. (1986). Enantiomers of warfarin and vitamin K1 metabolism. Br. J. Clin. Pharmacol. 22, 729–732. 10.1111/j.1365-2125.1986.tb02966.x
    1. Choudhry S., Ung N., Avila P. C., Ziv E., Nazario S., Casal J., et al. . (2005). Pharmacogenetic differences in response to albuterol between Puerto Ricans and Mexicans with asthma. Am. J. Respir. Crit. Care Med. 171, 563–570. 10.1164/rccm.200409-1286OC
    1. Clarke G. M., Anderson C. A., Pettersson F. H., Cardon L. R., Andrew P. (2011). Europe PMC funders group basic statistical analysis in genetic case-control studies. Nat. Protoc. 6, 121–133. 10.1038/nprot.2010.182
    1. Claudio-Campos K., Duconge J., Cadilla C. L., Rua-o G. (2015). Pharmacogenetics of drug metabolizing enzymes in U.S. Hispanics. Drug Metabol. Drug Interact. 30, 87–105. 10.1515/dmdi-2014-0023
    1. Daneshjou R., Klein T. E., Altman R. B. (2014). Genotype-guided dosing of vitamin K antagonists. N. Engl. J. Med. 370, 1762–1763. 10.1056/NEJMc1402521#SA5
    1. Dang M. T. N. (2005). The influence of ethnicity on Warfarin dosage requirement. Ann. Pharmacother. 39, 1008–1012. 10.1345/aph.1E566
    1. Di Martino M. T., Arbitrio M., Leone E., Guzzi P. H., Rotundo M. S., Ciliberto D., et al. . (2011). Single nucleotide polymorphisms of ABCC5 and ABCG1 transporter genes correlate to irinotecan-associated gastrointestinal toxicity in colorectal cancer patients: a DMET microarray profiling study. Cancer Biol. Ther. 12, 780–787. 10.4161/cbt.12.9.17781
    1. Drozda K., Wong S., Patel S. R., Bress A., Nutescu E., Kittles R. A., et al. . (2015). Poor warfarin dose prediction with pharmacogenetic algorithms that exclude genotypes important for African Americans. Pharmacogenet. Genomics 25, 73–81. 10.1097/FPC.0000000000000108
    1. Duconge J., Ramos A. S., Claudio-Campos K., Rivera-Miranda G., Bermúdez-Bosch L., Renta J. Y., et al. . (2016). A novel admixture-based pharmacogenetic approach to refine warfarin dosing in Caribbean Hispanics. PLoS ONE 11:e0145480. 10.1371/journal.pone.0145480
    1. Ferrari M., Romualdi E., Dentali F., Squizzato A., Marino F., Cosentino M., et al. . (2014). Association between ABCG2 and ABCB1 genes and warfarin stability: a case-control study. Thromb. Res. 134, 1359–1362. 10.1016/j.thromres.2014.09.017
    1. Fujikura K., Ingelman-Sundberg M., Lauschke V. M. (2015). Genetic variation in the human cytochrome P450 supergene family. Pharmacogenet. Genomics 25, 584–594. 10.1097/FPC.0000000000000172
    1. Fukami T., Kariya M., Kurokawa T., Iida A., Nakajima M. (2015). Comparison of substrate specificity among human arylacetamide deacetylase and carboxylesterases. Eur. J. Pharm. Sci. 78, 47–53. 10.1016/j.ejps.2015.07.006
    1. Gibbs R. A., Belmont J. W., Hardenbol P., Willis T. D., Yu F., Yang H., et al. (2003). The International HapMap Project. Nature 426:789 10.1038/nature02168
    1. Go A. S., Mozaffarian D., Roger V. L., Benjamin E. J., Berry J. D., Blaha M. J., et al. (2014). Heart disease and stroke statistics–2014 update: a report from the American Heart Association. Circulation 129, e28–292. 10.1161/01.cir.0000441139.02102.80
    1. Gurwitz D., McLeod H. L. (2013). Genome-wide studies in pharmacogenomics: harnessing the power of extreme phenotypes. Pharmacogenomics 14, 337–339. 10.2217/pgs.13.35
    1. Holsinger K. E., Weir B. S. (2009). Genetics in geographically structured populations: defining, estimating and interpreting F(ST). Nat. Rev. Genet. 10, 639–650. 10.1038/nrg2611
    1. Institute for Safe Medication Practices (2016). Quarter Watch Monitoring FDA MedWatch Reports. Annual Report Issue.
    1. Johnson J. A., Caudle K. E., Gong L., Whirl-Carrillo M., Stein C. M., Scott S. A., et al. . (2017). Clinical pharmacogenetics implementation consortium (cpic) guideline for pharmacogenetics-guided warfarin dosing: 2017. Clin. Pharmacol. Ther. 2017. [Epub ahead of print]. 10.1002/cpt.668
    1. Johnson J. A., Gong L., Whirl-Carrillo M., Gage B. F., Scott S. A., Stein C. M., et al. . (2014). Clinical Pharmacogenetics Implementation Consortium Guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing. Clin. Pharmacol. Ther. 90, 625–629. 10.1038/clpt.2011.185
    1. Jorgensen A. L., Al-Zubiedi S., Zhang J. E., Keniry A., Hanson A., Hughes D. A., et al. . (2009). Genetic and environmental factors determining clinical outcomes and cost of warfarin therapy: a prospective study. Pharmacogenet. Genomics 19, 800–812. 10.1097/FPC.0b013e3283317ab5
    1. Kakouros N., Rade J. J., Kourliouros A., Resar J. R. (2011). Platelet function in patients with diabetes mellitus: from a theoretical to a practical perspective. Int. J. Endocrinol. 2011:742719. 10.1155/2011/742719
    1. Kessler M. D., Yerges-Armstrong L., Taub M. A., Shetty A. C., Maloney K., Jeng L. J. B., et al. . (2016). Challenges and disparities in the application of personalized genomic medicine to populations with African ancestry. Nat. Commun. 7:12521. 10.1038/ncomms12521
    1. Kimmel S. E. (2013). A pharmacogenetic versus a clinical algorithm for warfarin dosing. N. Engl. J. Med. 369, 2283–2293. 10.1056/NEJMoa1310669
    1. Kimmel S. E., French B., Kasner S. E., Johnson J. A., Anderson J. L., Gage B. F., et al. . (2014). A pharmacogenetic versus a clinical algorithm for warfarin dosing. N. Engl. J. Med. 369, 2283–2293. 10.1056/NEJMoa1310669
    1. Kircher M., Witten D. M., Jain P., O'Roak B. J., Cooper G. M., Shendure J., et al. . (2014). A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 46, 310–315. 10.1038/ng.2892
    1. Lai C. Q., Tucker K. L., Choudhry S., Parnell L. D., Mattei J., García-Bailo B., et al. . (2009). Population admixture associated with disease prevalence in the Boston Puerto Rican health study. Hum. Genet. 125, 199–209. 10.1007/s00439-008-0612-7
    1. Landrum M. J., Lee J. M., Benson M., Brown G., Chao C., Chitipiralla S., et al. . (2016). ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 44, D862–D868. 10.1093/nar/gkv1222
    1. Li Y., Zalzala M., Jadhav K., Xu Y., Kasumov T., Yin L., et al. . (2016). Carboxylesterase 2 prevents liver steatosis by modulating lipolysis, endoplasmic reticulum stress, and lipogenesis and is regulated by hepatocyte nuclear factor 4 alpha in mice. Hepatology 63, 1860–1874. 10.1002/hep.28472
    1. Nagy F., Atsushi K., Wrighton S. (2010). Metabolism and disposition of the thienopyridine antiplatelet drugs ticlopidine, clopidogrel, and prasugrel in humans. J. Clin. Pharmacol. 50, 126–142. 10.1177/0091270009343005
    1. Nebert D. W. (2000). Extreme discordant phenotype methodology: an intuitive approach to clinical pharmacogenetics. Eur. J. Pharmacol. 410, 107–120. 10.1016/S0014-2999(00)00809-8
    1. Parra E. J., Botton M. R., Perini J. A., Krithika S., Bourgeois S., Johnson T. A., et al. (2015). Genome-wide association study of warfarin maintenance dose in a Brazilian sample HHS Public Access. Pharmacogenomics 16, 1–11. 10.2217/pgs.15.73
    1. Perera M. A., Gamazon E., Cavallari L. H., Patel S. R., Poindexter S., Kittles R. A., et al. . (2011a). The missing association: sequencing-based discovery of novel SNPs in VKORC1 and CYP2C9 that affect warfarin dose in African Americans. Clin. Pharmacol. Ther. 89, 408–415. 10.1038/clpt.2010.322
    1. Perera M. A., Limdi N. A., Cavallari L., Gamazon E. R., Konkashbaev A., Pluzhnikov A., et al. (2011b). Abstract 15518: Novel SNPs associated with warfarin dose in large multicenter cohort of African Americans: Genome wide association study and replication results. Circulation 124:A15518 Available online at:
    1. Pritchard J. K., Stephens M., Donelly P. (2000). Inference of population structure using multilocus genotype data. Genetics 155, 945–959.
    1. Pruim R. J., Welch R. P., Sanna S., Teslovich T. M., Chines P. S., Gliedt T. P., et al. . (2010). LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26, 2336–2337. 10.1093/bioinformatics/btq419
    1. Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M. A. R., Bender D., et al. . (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575. 10.1086/519795
    1. Rasmussen-Torvik L. J., Stallings S. C., Gordon A. S., Almoguera B., Basford M. A., Bielinski S. J., et al. . (2014). Design and anticipated outcomes of the eMERGE-PGx project: a multicenter pilot for preemptive pharmacogenomics in electronic health record systems. Clin. Pharmacol. Ther. 96, 482–489. 10.1038/clpt.2014.137
    1. Schwarz U. I., Ritchie M. D., Bradford Y., Li C., Dudek S. M., Frye-Anderson A., et al. . (2008). Genetic determinants of response to warfarin during initial anticoagulation. N. Engl. J. Med. 358, 999–1008. 10.1056/NEJMoa0708078
    1. Scott S. A., Jaremko M., Lubitz S. A., Kornreich R., Halperin J. L., Desnick R. J. (2009). CYP2C9*8 is prevalent among African_Americans: implications for pharmacogenetic dosing. Pharmacogenet. Genomics 10, 1243–1255. 10.2217/pgs.09.71
    1. Shen A. Y., Contreras R., Sobnosky S., Shah A. I., Ichiuji A. M., Jorgensen M. B., et al. . (2010). Racial/ethnic differences in the prevalence of atrial fibrillation among older adults–a cross-sectional study. J. Natl. Med. Assoc. 102, 906–913. 10.1016/S0027-9684(15)30709-4
    1. Shen A. Y., Yao J. F., Brar S. S., Jorgensen M. B., Chen W. (2007). Racial/ethnic differences in the risk of intracranial hemorrhage among patients with atrial fibrillation. J. Am. Coll. Cardiol. 50, 309–315. 10.1016/j.jacc.2007.01.098
    1. Shimizu M., Fukami T., Nakajima M., Yokoi T. (2014). Screening of specific inhibitors for human carboxylesterases or arylacetamide deacetylase. Drug Metab. Dispos. 42, 1103–1109. 10.1124/dmd.114.056994
    1. Simpson J. R., Zahuranec D. B., Lisabeth L. D., Sánchez B. N., Skolarus L. E., Mendizabal J. E., et al. . (2010). Mexican Americans with atrial fibrillation have more recurrent strokes than do non-hispanic whites. Stroke 41, 2132–2136. 10.1161/STROKEAHA.110.589127
    1. Stephens M., Smith N. J., Donnelly P. (2001). A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 68, 978–989. 10.1086/319501
    1. Sussman N. L., Waltershield M., Bulter T., Cali J. J., Riss T., Kelly J. H. (2002). The predictive nature of High-throughput toxicity screening using a human hepatocyte cell line. Cell Notes 3, 7–10. Available online at:
    1. Takeuchi F., McGinnis R., Bourgeois S., Barnes C., Eriksson N., Soranzo N., et al. . (2009). A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose. PLoS Genet. 5:e1000433. 10.1371/journal.pgen.1000433
    1. Tang Y., Sampson B., Pack S., Shah K., Yon Um S., Wang D., et al. . (2011). Ethnic differences in out-of-hospital fatal pulmonary embolism. Circulation 123, 2219–2225. 10.1161/CIRCULATIONAHA.110.976134
    1. Undas A., Wiek I., Stepien E., Zmudka K., Wieslawa T. (2008). Hyperglycemia is associated with enhanced thrombin formation, platelet activation, and fibrin clot resistance to lysis in patients with acute coronary syndrome. Diabetes Care 31, 1590–1595. 10.2337/dc08-0282
    1. Via M., Gignoux C. R., Roth L. A., Fejerman L., Galanter J., Choudhry S., et al. . (2011). History shaped the geographic distribution of genomic admixture on the island of Puerto Rico. PLoS ONE 6:e16513. 10.1371/journal.pone.0016513
    1. Wadelius M., Sörlin K., Wallerman O., Karlsson J., Yue Q.-Y., Magnusson P. K. E., et al. . (2004). Warfarin sensitivity related to CYP2C9, CYP3A5, ABCB1 (MDR1) and other factors. Pharmacogenomics J. 4, 40–48. 10.1038/sj.tpj.6500220
    1. Wang D., Chen H., Momary K. M., Cavallari L. H., Johnson J. A., Sadée W. (2008). Regulatory polymorphism in vitamin K epoxide reductase complex subunit 1 (VKORC1) affects gene expression and warfarin dose requirement. Blood 112, 1013–1021. 10.1182/blood-2008-03-144899
    1. White R. H., Beyth R. J., Zhou H., Romano P. S. (1999). Major bleeding after hospitalization for deep-venous thrombosis. Am. J. Med. 107, 414–424. 10.1016/S0002-9343(99)00267-3
    1. White R. H., Dager W. E., Zhou H., Murin S. (2006). Racial and gender differences in the incidence of recurrent venous thromboembolism. Thromb. Haemost. 96, 267–273. 10.1160/th06-07-0365
    1. Wu A. H. B., Wang P., Smith A., Haller C., Drake K., Linder M., et al. . (2008). Dosing algorithm for warfarin using CYP2C9 and VKORC1 genotyping from a multi-ethnic population: comparison with other equations. Pharmacogenomics 9, 169–178. 10.2217/14622416.9.2.169
    1. Wysowski D. K., Nourjah P., Swartz L. (2007). Bleeding complications with Warfarin use: a prevalent adverse effect resulting in regulatory action. Arch. Intern. Med. 167, 1414–1419. 10.1001/archinte.167.13.1414
    1. Yong L., Jeong H.-Y., Takahashi H., Drozda K., Patel S. R., Shapiro N. L., et al. (2012). Decreased warfarin clearance with CYP2C9 R150H (*8) polymorphism. Clin. Pharmacol. Ther. 91, 660–665. 10.1038/clpt.2011.269

Source: PubMed

3
Prenumerera