Incidence and predictive biomarkers of Clostridioides difficile infection in hospitalized patients receiving broad-spectrum antibiotics

Cornelis H van Werkhoven, Annie Ducher, Matilda Berkell, Mohamed Mysara, Christine Lammens, Julian Torre-Cisneros, Jesús Rodríguez-Baño, Delia Herghea, Oliver A Cornely, Lena M Biehl, Louis Bernard, M Angeles Dominguez-Luzon, Sofia Maraki, Olivier Barraud, Maria Nica, Nathalie Jazmati, Frederique Sablier-Gallis, Jean de Gunzburg, France Mentré, Surbhi Malhotra-Kumar, Marc J M Bonten, Maria J G T Vehreschild, ANTICIPATE Study Group, Annemarie M S Engbers, Marieke J A de Regt, Herman Goossens, Basil Britto Xavier, Marie-Noelle Bouverne, Pieter Monsieurs, Uta Merle, Andreas Stallmach, Jan Rupp, Johannes Bogner, Christoph Lübbert, Gerda Silling, Oliver Witzke, Achilleas Gikas, George Daikos, Sotirios Tsiodras, Athanasios Skoutelis, Helen Sambatakou, Miquel Pujol, Jose M Aguado, Emilio Bouza, Javier Cobo, Benito Almirante, Simin A Florescu, Andrei Vata, Adriana Hristea, Mihaela Lupse, Deborah Postil, Jean-Michel Molina, Victoire De Lastours, Thomas Guimard, Jean-Philippe Talarmin, Xavier Duval, Odile Launay, Cornelis H van Werkhoven, Annie Ducher, Matilda Berkell, Mohamed Mysara, Christine Lammens, Julian Torre-Cisneros, Jesús Rodríguez-Baño, Delia Herghea, Oliver A Cornely, Lena M Biehl, Louis Bernard, M Angeles Dominguez-Luzon, Sofia Maraki, Olivier Barraud, Maria Nica, Nathalie Jazmati, Frederique Sablier-Gallis, Jean de Gunzburg, France Mentré, Surbhi Malhotra-Kumar, Marc J M Bonten, Maria J G T Vehreschild, ANTICIPATE Study Group, Annemarie M S Engbers, Marieke J A de Regt, Herman Goossens, Basil Britto Xavier, Marie-Noelle Bouverne, Pieter Monsieurs, Uta Merle, Andreas Stallmach, Jan Rupp, Johannes Bogner, Christoph Lübbert, Gerda Silling, Oliver Witzke, Achilleas Gikas, George Daikos, Sotirios Tsiodras, Athanasios Skoutelis, Helen Sambatakou, Miquel Pujol, Jose M Aguado, Emilio Bouza, Javier Cobo, Benito Almirante, Simin A Florescu, Andrei Vata, Adriana Hristea, Mihaela Lupse, Deborah Postil, Jean-Michel Molina, Victoire De Lastours, Thomas Guimard, Jean-Philippe Talarmin, Xavier Duval, Odile Launay

Abstract

Trial enrichment using gut microbiota derived biomarkers by high-risk individuals can improve the feasibility of randomized controlled trials for prevention of Clostridioides difficile infection (CDI). Here, we report in a prospective observational cohort study the incidence of CDI and assess potential clinical characteristics and biomarkers to predict CDI in 1,007 patients ≥ 50 years receiving newly initiated antibiotic treatment with penicillins plus a beta-lactamase inhibitor, 3rd/4th generation cephalosporins, carbapenems, fluoroquinolones or clindamycin from 34 European hospitals. The estimated 90-day cumulative incidences of a first CDI episode is 1.9% (95% CI 1.1-3.0). Carbapenem treatment (Hazard Ratio (95% CI): 5.3 (1.7-16.6)), toxigenic C. difficile rectal carriage (10.3 (3.2-33.1)), high intestinal abundance of Enterococcus spp. relative to Ruminococcus spp. (5.4 (2.1-18.7)), and low Shannon alpha diversity index as determined by 16 S rRNA gene profiling (9.7 (3.2-29.7)), but not normalized urinary 3-indoxyl sulfate levels, predicts an increased CDI risk.

Conflict of interest statement

C.Hv.W. received speaker fees from Pfizer and Merck/MSD, and non-financial research support from bioMérieux. A.D. and F.S. are employees and shareholders of Da Volterra, Paris. J.G. is a consultant and shareholder of Da Volterra. J.T.C. has received speaker and consultant fess from Pfizer, MSD, Shionogy, Menarini and research support from Pfizer. O.A.C. is supported by the German Federal Ministry of Research and Education, is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—CECAD, EXC 2030—390661388 and has received research grants from Actelion, Amplyx, Astellas, Basilea, Cidara, Da Volterra, F2G, Gilead, Janssen, Medicines Company, Melinta, Merck/MSD, Octapharma, Pfizer, Scynexis, is a consultant to Actelion, Allecra, Amplyx, Astellas, Basilea, Biosys, Cidara, Da Volterra, Entasis, F2G, Gilead, Matinas, MedPace, Menarini, Merck/MSD, Mylan, Nabriva, Noxxon, Octapharma, Paratek, Pfizer, PSI, Roche Diagnostics, Scynexis, and Shionogi, and received lecture honoraria from Al-Jazeera Pharmaceuticals, Astellas, Basilea, Gilead, Grupo Biotoscana, Merck/MSD and Pfizer. L.M.B. has received lecture honoraria from Astellas and Merck/MSD, and travel grants from 3M and Gilead. OB received speaker fees and/or travel grants from Pfizer, MSD, Roche and Sanofi and has been a consultant to bioMérieux and Mylan. F.M. is a consultant for Da Volterra, IPSEN, Servier and received research grants from Da Volterra, Sanofi and Servier. MJGTV has received research grants from 3M, Astellas Pharma, Da Volterra, Gilead Sciences, Glycom, MaaT Pharma, Merck/MSD, Organobalance, Seres Therapeutics; speaker fees from Astellas Pharma, Basilea, Gilead Sciences, Merck/MSD, Organobalance, Pfizer and has been a consultant to Alb Fils Kliniken GmbH, Astellas Pharma, Bio-Mérieux, Da Volterra, Ferring, MaaT Pharma, Merck/MSD. The remaining authors declare no competing interests.

Figures

Fig. 1. Inclusion flowchart.
Fig. 1. Inclusion flowchart.
*Based on 28 hospitals that provided screening data. Hospitals were requested to complete on the screening log for all screened patients up to March 23, 2017, and all eligible patients for the entire study period. Of the enrolled patients, 897 (89.1%) were enrolled in hospitals that provided screening data. **Subjects who signed informed consent but met one of the exclusion criteria at baseline. This includes 33 subjects from one side that applied an early consent procedure for subjects at high risk of receiving antibiotics in the near future. Abbreviations: AB antibiotics, CDI C. difficile infection, ICU intensive care unit, MD medical doctor.

References

    1. Lessa FC, et al. Burden of Clostridium difficile infection in the United States. N. Engl. J. Med. 2015;372:825–834. doi: 10.1056/NEJMoa1408913.
    1. Zhang D, Prabhu VS, Marcella SW. Attributable healthcare resource utilization and costs for patients with primary and recurrent Clostridium difficile Infection in the United States. Clin. Infect. Dis. 2018;66:1326–1332. doi: 10.1093/cid/cix1021.
    1. Heimann SM, Cruz Aguilar MR, Mellinghof S, Vehreschild MJGT. Economic burden and cost-effective management of Clostridium difficile infections. Med. Mal. Infect. 2018;48:23–29. doi: 10.1016/j.medmal.2017.10.010.
    1. Johnston BC, et al. Microbial preparations (Probiotics) for the prevention of Clostridium difficile infection in adults and children: an individual patient data meta-analysis of 6,851 participants. Infect. Control Hosp. Epidemiol. 2018;39:771–781. doi: 10.1017/ice.2018.84.
    1. Gunzburg Jde, et al. Protection of the human gut microbiome from antibiotics. J. Infect. Dis. 2018;217:628–636. doi: 10.1093/infdis/jix604.
    1. Kokai-Kun JF, et al. Use of ribaxamase (SYN-004), a β-lactamase, to prevent Clostridium difficile infection in β-lactam-treated patients: a double-blind, phase 2b, randomised placebo-controlled trial. Lancet Infect. Dis. 2019;19:487–496. doi: 10.1016/S1473-3099(18)30731-X.
    1. Bézay N, et al. Safety, immunogenicity and dose response of VLA84, a new vaccine candidate against Clostridium difficile, in healthy volunteers. Vaccine. 2016;34:2585–2592. doi: 10.1016/j.vaccine.2016.03.098.
    1. Allen SJ, et al. Lactobacilli and bifidobacteria in the prevention of antibiotic-associated diarrhea and Clostridium difficile diarrhea in older inpatients (PLACIDE): a randomised, double-blind, placebo-controlled, multicentre trial. Lancet. 2013;382:1249–1257. doi: 10.1016/S0140-6736(13)61218-0.
    1. Eze P, Balsells E, Kyaw MH, Nair H. Risk factors for Clostridium difficile infections—an overview of the evidence base and challenges in data synthesis. J. Glob. Health. 2017;7:010417. doi: 10.7189/jogh.07.010417.
    1. Kavanagh K, et al. Cumulative and temporal associations between antimicrobial prescribing and community-associated Clostridium difficile infection: population-based case–control study using administrative data. J. Antimicrob. Chemother. 2017;72:1193–1201.
    1. Zacharioudakis IM, Zervou FN, Pliakos EE, Ziakas PD, Mylonakis E. Colonization with toxinogenic C. difficile upon hospital admission, and risk of infection: a systematic review and meta-analysis. Am. J. Gastroenterol. 2015;110:381–390. doi: 10.1038/ajg.2015.22.
    1. Buffie CG, et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature. 2015;517:205–208. doi: 10.1038/nature13828.
    1. Samarkos M, Mastrogianni E, Kampouropoulou O. The role of gut microbiota in Clostridium difficile infection. Eur. J. Intern. Med. 2018;50:28–32. doi: 10.1016/j.ejim.2018.02.006.
    1. Berkell, M., et al. Microbiota-based markers predictive of development of Clostridioides difficile infection. Nat. Commun.10.1038/s41467-021-22302-0 (2021).
    1. Werkhoven CHvan, et al. Identification of patients at high risk for Clostridium difficile infection: development and validation of a risk prediction model in hospitalized patients treated with antibiotics. Clin. Microbiol. Infect. 2015;21:786.e1–8. doi: 10.1016/j.cmi.2015.04.005.
    1. Weber D, et al. Low urinary indoxyl sulfate levels early after transplantation reflect a disrupted microbiome and are associated with poor outcome. Blood. 2015;126:1723–1728. doi: 10.1182/blood-2015-04-638858.
    1. Farowski F, et al. Assessment of urinary 3-indoxyl sulfate as a marker for gut microbiota diversity and abundance of Clostridiales. Gut Microbes. 2019;10:133–141. doi: 10.1080/19490976.2018.1502536.
    1. Vincent C, et al. Reductions in intestinal Clostridiales precede the development of nosocomial Clostridium difficile infection. Microbiome. 2013;1:18. doi: 10.1186/2049-2618-1-18.
    1. Antharam VC, et al. Intestinal dysbiosis and depletion of butyrogenic bacteria in Clostridium difficile infection and nosocomial diarrhea. J. Clin. Microbiol. 2013;51:2884–2892. doi: 10.1128/JCM.00845-13.
    1. Goldberg E, et al. The correlation between Clostridium-difficile infection and human gut concentrations of Bacteroidetes phylum and clostridial species. Eur. J. Clin. Microbiol. Infect. Dis. 2014;33:377–383. doi: 10.1007/s10096-013-1966-x.
    1. Vincent C, et al. Bloom and bust: intestinal microbiota dynamics in response to hospital exposures and Clostridium difficile colonization or infection. Microbiome. 2016;4:12. doi: 10.1186/s40168-016-0156-3.
    1. Jazmati N, et al. Evaluation of the use of rectal swabs for laboratory diagnosis of Clostridium difficile infection. J. Clin. Microbiol. 2018;56:e00426–18. doi: 10.1128/JCM.00426-18.
    1. Melzer E, et al. Universal screening for Clostridioides difficile in a tertiary hospital: risk factors for carriage and clinical disease. Clin. Microbiol. Infect. 2019;25:1127–1132. doi: 10.1016/j.cmi.2019.02.002.
    1. Crobach MJT, et al. European Society of Clinical Microbiology and Infectious Diseases: update of the diagnostic guidance document for Clostridium difficile infection. Clin. Microbiol Infect. 2016;22(Suppl 4):S63–S81. doi: 10.1016/j.cmi.2016.03.010.
    1. R Core Team (2018). R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria). .
    1. Mysara M, et al. Reconciliation between operational taxonomic units and species boundaries. FEMS Microbiol. Ecol. 2017;93:e1–e12. doi: 10.1093/femsec/fix029.
    1. Bob Gray (2014). cmprsk: Subdistribution Analysis of Competing Risks. R package version 2.2-7.
    1. Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a competing risk. J. Am. Stat. Assoc. 1999;94:496–509. doi: 10.1080/01621459.1999.10474144.
    1. Youden WJ. Index for rating diagnostic tests. Cancer. 1950;3:32–35. doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>;2-3.

Source: PubMed

3
Prenumerera