The Relation between Sarcopenia and Mortality in Patients at Intensive Care Unit

Mehmet Toptas, Mazhar Yalcin, İbrahim Akkoc, Eren Demir, Cagatay Metin, Yildiray Savas, Muhsin Kalyoncuoglu, Mehmet Mustafa Can, Mehmet Toptas, Mazhar Yalcin, İbrahim Akkoc, Eren Demir, Cagatay Metin, Yildiray Savas, Muhsin Kalyoncuoglu, Mehmet Mustafa Can

Abstract

Background and aim: Psoas muscle area (PMA) can reflect the status of skeletal muscle in the whole body. It has been also reported that decreased PMA was associated with postoperative mortality or morbidity after several surgical procedures. In this study, we aimed to investigate the relation between PMA and mortality in all age groups in intensive care unit (UNIT).

Materials and method: The study consists of 362 consecutive patients. The demographic characteristics of patients, indications for ICU hospitalization, laboratory parameters, and clinical parameters consist of mortality and length of stay, and surgery history was obtained from intensive care archive records.

Results: The mean age was 61.2 ± 18.2 years, and the percentage of female was 33.3%. The mean duration of stay was 10.3 ± 24.4 days. Exitus ratio, partial healing, and healing were 25%, 70%, and 5%, respectively. The mean right, left, and total PMA were 8.7 ± 3.6, 8.9 ± 3.4, and 17.6 ± 6.9, respectively. The left and total PMA averages of the nonoperation patients were statistically significantly lower (p = 0.021 p = 0.043). The mean PMA between the ex and recovered patients were statistically significantly lower (p = 0.001, p = 0.001, p < 0.001). Dyspnoea, renal insufficiency, COPD, transfusion rate, operation rate, ventilator needy, and mean duration of hospitalization were statistically significant higher in patients with exitus. There is a significant difference in operation types, anesthesia type, and clinic rates.

Conclusion: Our data suggest that sarcopenia can be used to risk stratification in ICU patients. Future studies may use this technique to individualize postoperative interventions that may reduce the risk for an adverse discharge disposition related to critical illness, such as early mobilization, optimized nutritional support, and reduction of sedation and opioid dose.

References

    1. Le Maguet P., Roquilly A., Lasocki S., et al. Prevalence and impact of frailty on mortality in elderly ICU patients: A prospective, multicenter, observational study. Intensive Care Medicine. 2014;40(5):674–682. doi: 10.1007/s00134-014-3253-4.
    1. Vincent J.-L., Moreno R. Clinical review: scoring systems in the critically ill. Critical Care. 2010;14(2, article 207) doi: 10.1186/cc8204.
    1. Ravn B., Prowle J. R., Mårtensson J., Martling C.-R., Bell M. Superiority of Serum Cystatin C Over Creatinine in Prediction of Long-Term Prognosis at Discharge From ICU. Critical Care Medicine. 2017 doi: 10.1097/CCM.0000000000002537.
    1. Docherty A. B., Sim M., Oliveira J., et al. Early troponin I in critical illness and its association with hospital mortality: A cohort study. Critical Care. 2017;21(1, article no. 216) doi: 10.1186/s13054-017-1800-4.
    1. Zuckerman J., Ades M., Mullie L., et al. Psoas Muscle Area and Length of Stay in Older Adults Undergoing Cardiac Operations. The Annals of Thoracic Surgery. 2017;103(5):1498–1504. doi: 10.1016/j.athoracsur.2016.09.005.
    1. Fairchild B., Webb T. P., Xiang Q., Tarima S., Brasel K. J. Sarcopenia and frailty in elderly trauma patients. World Journal of Surgery. 2015;39(2):373–379. doi: 10.1007/s00268-014-2785-7.
    1. Weijs P. J. M., Looijaard W. G. P. M., Dekker I. M., et al. Low skeletal muscle area is a risk factor for mortality in mechanically ventilated critically ill patients. Critical Care. 2014;18(1, article no. R12) doi: 10.1186/cc13189.
    1. Moisey L. L., Mourtzakis M., Cotton B. A., et al. Skeletal muscle predicts ventilator-free days, ICU-free days, and mortality in elderly ICU patients. Critical Care. 2013;17(5, article no. R206) doi: 10.1186/cc12901.
    1. Mueller N., Murthy S., Tainter C. R., et al. Can sarcopenia quantified by ultrasound of the rectus femoris muscle predict adverse outcome of surgical intensive care unit patients as well as frailty? a prospective, observational cohort study. Annals of Surgery. 2016;264(6):1116–1124. doi: 10.1097/SLA.0000000000001546.
    1. von Haehling S., Anker M. S., Anker S. D. Prevalence and clinical impact of cachexia in chronic illness in Europe, USA, and Japan: facts and numbers update 2016. Journal of Cachexia, Sarcopenia and Muscle. 2016;7(5):507–509. doi: 10.1002/jcsm.12167.
    1. Marra A. M., Arcopinto M., Bossone E., Ehlken N., Cittadini A., Grünig E. Pulmonary arterial hypertension-related myopathy: An overview of current data and future perspectives. Nutrition, Metabolism & Cardiovascular Diseases. 2015;25(2):131–139. doi: 10.1016/j.numecd.2014.10.005.
    1. Sheetz K. H., Zhao L., Holcombe S. A., et al. Decreased core muscle size is associated with worse patient survival following esophagectomy for cancer. Diseases of the Esophagus. 2013;26(7):716–722. doi: 10.1111/dote.12020.
    1. Finn M., Green P. The Influence of Frailty on Outcomes in Cardiovascular Disease. Revista espanola de cardiologia (English ed.) 2015;68(8):653–656. doi: 10.1016/j.rec.2015.04.005.
    1. Song X., Mitnitski A., Rockwood K. Prevalence and 10-Year outcomes of frailty in older adults in relation to deficit accumulation. Journal of the American Geriatrics Society. 2010;58(4):681–687. doi: 10.1111/j.1532-5415.2010.02764.x.
    1. Rockwood K., Howlett S. E., MacKnight C., et al. Prevalence, Attributes, and Outcomes of Fitness and Frailty in Community-Dwelling Older Adults: Report From the Canadian Study of Health and Aging. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences. 2004;59(12):1310–1317. doi: 10.1093/gerona/59.12.1310.
    1. Shamliyan T., Talley K. M. C., Ramakrishnan R., Kane R. L. Association of frailty with survival: A systematic literature review. Ageing Research Reviews. 2013;12(2):719–736. doi: 10.1016/j.arr.2012.03.001.
    1. Fried L. P., Ferrucci L., Darer J., Williamson J. D., Anderson G. Untangling the Concepts of Disability, Frailty, and Comorbidity: Implications for Improved Targeting and Care. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences. 2004;59(3):255–263. doi: 10.1093/gerona/59.3.M255.
    1. Kim H., Hirano H., Edahiro A., et al. Sarcopenia: Prevalence and associated factors based on different suggested definitions in community-dwelling older adults. Geriatrics & Gerontology International. 2016;16:110–122. doi: 10.1111/ggi.12723.
    1. Shah N., Abeysundara L., Dutta P., et al. The association of abdominal muscle with outcomes after scheduled abdominal aortic aneurysm repair. Anaesthesia. 2017;72(9):1107–1111. doi: 10.1111/anae.13980.
    1. Fielding R. A., Vellas B., Evans W. J., et al. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. Journal of the American Medical Directors Association. 2011;12(4):249–256. doi: 10.1016/j.jamda.2011.01.003.
    1. Heymsfield S. B., Adamek M., Gonzalez M. C., Jia G., Thomas D. M. Assessing skeletal muscle mass: Historical overview and state of the art. Journal of Cachexia, Sarcopenia and Muscle. 2014;5(1):9–18. doi: 10.1007/s13539-014-0130-5.
    1. Shen W., Punyanitya M., Wang Z., et al. Total body skeletal muscle and adipose tissue volumes: estimation from a single abdominal cross-sectional image. Journal of Applied Physiology. 2004;97(6):2333–2338. doi: 10.1152/japplphysiol.00744.2004.
    1. Mourtzakis M., Prado C. M. M., Lieffers J. R., Reiman T., McCargar L. J., Baracos V. E. A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Applied Physiology, Nutrition, and Metabolism. 2008;33(5):997–1006. doi: 10.1139/h08-075.
    1. Gomez-Perez S. L., Haus J. M., Sheean P., et al. Measuring abdominal circumference and skeletal muscle from a single cross-sectional computed tomography image: A step-by-step guide for clinicians using National Institutes of Health ImageJ. Journal of Parenteral and Enteral Nutrition. 2016;40(3):308–318. doi: 10.1177/0148607115604149.
    1. Mayberry R. M., Nicewander D. A., Qin H., Ballard D. J. Improving Quality and Reducing Inequities: A Challenge in Achieving Best Care. Baylor University Medical Center Proceedings. 2017;19(2):103–118. doi: 10.1080/08998280.2006.11928138.
    1. Bickenbach J., Fries M., Rex S., et al. Outcome and mortality risk factors in long-term treated ICU patients: A retrospective analysis. Minerva Anestesiologica. 2011;77(4):427–438.
    1. Hopkins T. J., Raghunathan K., Barbeito A., et al. Associations between ASA Physical Status and postoperative mortality at 48 h: a contemporary dataset analysis compared to a historical cohort. Perioperative Medicine. 2016;5(1) doi: 10.1186/s13741-016-0054-z.
    1. Wolters U., Wolf T., Stützer H., Shcr T., Shcröder T. Associations between ASA Physical Status and postoperative mortality at 48 h: a contemporary dataset analysis compared to a historical cohort. British Journal of Anaesthesia. 1996;77:217–222.
    1. Sankar A., Johnson S. R., Beattie W. S., Tait G., Wijeysundera D. N. Reliability of the American Society of Anesthesiologists physical status scale in clinical practice. British Journal of Anaesthesia. 2014;113(3):424–432. doi: 10.1093/bja/aeu100.
    1. Sobol J. B., Wunsch H. Triage of high-risk surgical patients for intensive care. Critical Care. 2011;15(2, article no. 217) doi: 10.1186/cc9999.
    1. Uzman S., Yilmaz Y., Toptas M., et al. A retrospective analysis of postoperative patients admitted to the intensive care unit. Hippokratia. 2016;20(1):38–43.
    1. Abbas S., Kahokher A., Mahmoud M., Hill A. Physiologic Modification of the American Society of Anaesthesiology Score (ASA) for Prediction of Morbidity and Mortality after Emergency Laparotomy. The Internet Journal of Surgery. 2008;20(2):1–9.
    1. Zali A. R., Seddighi A. S., Seddighi A., Ashrafi F. Comparison of the acute physiology and chronic health evaluation score (APACHE) II with GCS in predicting hospital mortality of neurosurgical intensive care unit patients. Global Journal of Health Science. 2012;4(3):179–184.
    1. Harrison D. A., Lone N. I., Haddow C., et al. External validation of the Intensive Care National Audit Research Centre (ICNARC) risk prediction model incritical care units in Scotland. BMC Anesthesiol. 2014;14:p. 116.
    1. Minto G., Biccard B. Assessment of the high-risk perioperative patient. Continuing Education in Anaesthesia, Critical Care and Pain. 2014;14(1):12–17. doi: 10.1093/bjaceaccp/mkt020.mkt020
    1. Pearse R. M., Moreno R. P., Bauer P., et al. Mortality after surgery in Europe: a 7 day cohort study. 380: Lancet; 2012. European Surgical Outcomes Study (EuSOS) group for the Trials groups of the European Society of Intensive Care Medicine and the European Society of Anesthesiology; pp. 1059–1065.
    1. Higgins T. L. Quantifying risk and benchmarking performance in the adult intensive care unit. Journal of Intensive Care Medicine. 2007;22(3):141–156. doi: 10.1177/0885066607299520.
    1. Kalyani R. R., Corriere M., Ferrucci L. Age-related and disease-related muscle loss: the effect of diabetes, obesity, and other diseases. The Lancet Diabetes & Endocrinology. 2014;2(10):819–829. doi: 10.1016/s2213-8587(14)70034-8.
    1. Fan J., Kou X., Yang Y., Chen N. MicroRNA-regulated proinflammatory cytokines in sarcopenia. Mediators of Inflammation. 2016;2016 doi: 10.1155/2016/1438686.1438686
    1. Lutz C. T., Quinn L. S. Sarcopenia, obesity, and natural killer cell immune senescence in aging: altered cytokine levels as a common mechanism. AGING. 2012;4(8):535–546. doi: 10.18632/aging.100482.
    1. Umegaki H. Sarcopenia and diabetes: Hyperglycemia is a risk factor for age-associated muscle mass and functional reduction. Journal of Diabetes Investigation. 2015;6(6):623–624. doi: 10.1111/jdi.12365.
    1. Morley J. E., Malmstrom T. K., Rodriguez M., et al. Frailty is also higher in the prevalence in older with DM. Journal of the American Medical Directors Association. 2014;15:853–859.
    1. Kalyani R. R., Metter E. J., Egan J., Golden S. H., Ferrucci L. Hyperglycemia predicts persistently lower muscle strength with aging. Diabetes Care. 2015;38(1):82–90. doi: 10.2337/dc14-1166.

Source: PubMed

3
Prenumerera