Szabo 2-stent technique for coronary bifurcation lesions: procedural and short-term outcomes

Hongbo Yang, Juying Qian, Zheyong Huang, Junbo Ge, Hongbo Yang, Juying Qian, Zheyong Huang, Junbo Ge

Abstract

Background: Provisional 1-stent technique is currently regarded as the default approach for the majority of bifurcation lesions. Nonetheless, 2-stent techniques may be required for complex bifurcations with high compromise risk or fatal consequences of side branch (SB) occlusion. Limitations exist in current approaches, as stents gap, multiple metal layers and stent malapposition caused by imprecise placement with fluoroscopic guide and intrinsic technical defects. This study was designed to investigate the effectiveness of the novel Szabo 2-stent technique for coronary bifurcation lesions.

Methods: In the Szabo 2-stent technique, one stent is precisely implanted at the SB ostium with Szabo technique resulting in a single strut protruding into the main vessel (MV). After MV rewiring and SB guidewire withdrawal, another stent is implanted in MV followed by proximal optimization technique, SB rewiring, and final kissing inflation (FKI).

Results: The technique tested successfully in silicone tubes (n = 9) with: procedure duration, 31.2 ± 6.8 min; MV and SB rewiring time, 26.8 ± 11.2 s and 33.3 ± 15 s; easy FKI; and 2.3 ± 0.5 balloons/procedure. Bifurcation lesions (n = 22) were treated with angiographic success in MV and SB, respectively: increased minimal lumen diameter (0.63 ± 0.32 mm to 3.20 ± 0.35 mm; 0.49 ± 0.37 mm to 2.67 ± 0.25 mm); low residual stenosis (12.4 ± 2.4%; 12.4 ± 2.3%); and intravascular ultrasound confirmed (n = 19) full coverage; minimal overlap and malapposition; minimal lumen area (2.4 ± 1.2 mm2; 2.1 ± 1.0 mm2); plaque burden (78.1 ± 11.3%; 71.6 ± 15.5%); and minimal stent area (9.1 ± 1.6 mm2; 6.1 ± 1.3 mm2). Periprocedural cardiac troponin increased in 1 asymptomatic patient without electrocardiographic change. There was no target lesion failure (cardiac death, myocardial infarction, target lesion revascularization) at 6-month follow-up.

Conclusions: The Szabo 2-stent technique for bifurcation lesions provided acceptable safety and efficacy at short-term follow-up.

Keywords: 2-stent technique; Coronary bifurcation; Percutaneous coronary intervention; Szabo technique.

Conflict of interest statement

All authors declare no competing financial interests.

Figures

Fig. 1
Fig. 1
Stent preparation. a Inflation with 4 atm. b Deflation. c Anchoring guidewire threading. d Manually crimped flared end of the stent back into place
Fig. 2
Fig. 2
Schematic image depicting the steps of the Szabo 2-stent technique. See detailed explanation in the main text. Guidewires are advanced into the SB (green) and the MV (orange). The SB stent is accurately positioned with anchoring guidewire at the ostial junction (a) (see Online Video 1) and deployed (b) (see Online Video 2). MV is rewired free from strut (c) (see Online Video 3) and SB stent is optimized (d). One strut protrudes into the MV (e) and the MV stent is positioned and deployed (f). MV stent is inflated for proximal optimization technique (g). SB rewiring (h) (see Online Video 4) and final kissing inflation (i) (see Online Video 5) is performed to achieve final results (j). MV = main vessel; SB = side branch
Fig. 3
Fig. 3
Step-by-step Szabo 2-stent technique application in a patient. Baseline coronary angiogram was presented in (a). Diagonal stent is precisely positioned (b) (see Online Video 6) and deployed (c). LAD rewiring free from strut (d) (see Online Video 7) and optimizing diagonal stent (e) results in one strut protrusion into LAD (see Online Videos 8 and 9). LAD stenting (f) and optimization (g) followed by diagonal branch rewiring (h) (see Online Video 10) and final kissing inflation (i) (see Online Video 11). Final result (j) is assessed by coronary angiography (j) and intravascular ultrasound (see Online Videos 12 and 13) to confirm the struts gap and overlap. LAD = left anterior descending artery
Fig. 4
Fig. 4
Results of bench testing. Three representative examples from the in vitro procedures show no stent gap with minimal overlap and malapposition of the stents
Fig. 5
Fig. 5
Representative follow-up results of 1 patient. a Baseline images with true bifurcation lesion. b Accurate placement of stent in the first diagnol branch with 1 strut protruding into the left anterior descending artery. c Postprocedure with minimal overlap and malapposition. d Follow-up results with mild neointimal proliferation

References

    1. Lassen JF, Holm NR, Stankovic G, Lefèvre T, Chieffo A, Hildick-Smith D, et al. Percutaneous coronary intervention for coronary bifurcation disease: consensus from the first 10 years of the European bifurcation Club meetings. EuroIntervention. 2014;10:545–560. doi: 10.4244/EIJV10I5A97.
    1. Sawaya FJ, Lefèvre T, Chevalier B, Garot P, Hovasse T, Morice M-C, et al. Contemporary approach to coronary bifurcation lesion treatment. JACC Cardiovasc Interv. 2016;9:1861–1878. doi: 10.1016/j.jcin.2016.06.056.
    1. Maeng M, Holm NR, Erglis A, Kumsars I, Niemela M, Kervinen K, et al. Long-term results after simple versus complex stenting of coronary artery bifurcation lesions: Nordic bifurcation study 5-year follow-up results. J Am Coll Cardiol. 2013;62:30–34. doi: 10.1016/j.jacc.2013.04.015.
    1. Colombo A, Bramucci E, Saccà S, Violini R, Lettieri C, Zanini R, et al. Randomized study of the crush technique versus provisional side-branch stenting in true coronary bifurcations: the CACTUS (coronary bifurcations: application of the crushing technique using Sirolimus-eluting stents) study. Circulation. 2009;119:71–78. doi: 10.1161/CIRCULATIONAHA.108.808402.
    1. Ferenc M, Gick M, Kienzle R-P, Bestehorn H-P, Werner K-D, Comberg T, et al. Randomized trial on routine vs. provisional T-stenting in the treatment of de novo coronary bifurcation lesions. Eur Heart J. 2008;29:2859–2867. doi: 10.1093/eurheartj/ehn455.
    1. Song YB, Park TK, Hahn J-Y, Yang JH, Choi J-H, Choi S-H, et al. Optimal strategy for provisional side branch intervention in coronary bifurcation lesions: 3-year outcomes of the SMART-STRATEGY randomized trial. JACC Cardiovasc Interv. 2016;9:517–526. doi: 10.1016/j.jcin.2015.11.037.
    1. Kim Y-H, Lee J-H, Roh J-H, Ahn J-M, Yoon S-H, Park D-W, et al. Randomized comparisons between different stenting approaches for bifurcation coronary lesions with or without side branch stenosis. JACC Cardiovasc Interv. 2015;8:550–560. doi: 10.1016/j.jcin.2015.01.016.
    1. Cho S, Kang TS, Kim J-S, Hong S-J, Shin D-H, Ahn C-M, et al. Long-term clinical outcomes and optimal stent strategy in left Main coronary bifurcation stenting. JACC Cardiovasc Interv. 2018;11:1247–1258. doi: 10.1016/j.jcin.2018.03.009.
    1. Burzotta F, Lassen JF, Banning AP, Lefèvre T, Hildick-Smith D, Chieffo A, et al. Percutaneous coronary intervention in left main coronary artery disease: the 13th consensus document from the European bifurcation Club. EuroIntervention. 2018;14:112–120. doi: 10.4244/EIJ-D-18-00357.
    1. Dou K, Zhang D, Xu B, Yang Y, Yin D, Qiao S, et al. An angiographic tool for risk prediction of side branch occlusion in coronary bifurcation intervention: the RESOLVE score system (risk prEdiction of side branch OccLusion in coronary bifurcation interVEntion) JACC Cardiovasc Interv. 2015;8:39–46. doi: 10.1016/j.jcin.2014.08.011.
    1. Colombo A, Ruparelia N. The relentless attempt to perfect the 2-stent technique. JACC Cardiovasc Interv. 2015;8:960–961. doi: 10.1016/j.jcin.2015.02.015.
    1. Toth G, Pyxaras S, Mortier P, De Vroey F, Di Gioia G, Adjedj J, et al. Single string technique for coronary bifurcation stenting: detailed technical evaluation and feasibility analysis. JACC Cardiovasc Interv. 2015;8:949–959. doi: 10.1016/j.jcin.2015.01.037.
    1. Galassi AR, Colombo A, Buchbinder M, Grasso C, Tomasello SD, Ussia GP, et al. Long-term outcomes of bifurcation lesions after implantation of drug-eluting stents with the “mini-crush technique”. Catheter Cardiovasc Interv. 2007;69:976–983. doi: 10.1002/ccd.21047.
    1. Chen S-L, Zhang J-J, Han Y, Kan J, Chen L, Qiu C, et al. Double kissing crush versus provisional stenting for left Main distal bifurcation lesions: DKCRUSH-V randomized trial. J Am Coll Cardiol. 2017;70:2605–2617. doi: 10.1016/j.jacc.2017.09.1066.
    1. Rigatelli G, Zuin M, Vassilev D, Dinh H, Giatti S, Carraro M, et al. Culotte versus the novel nano-crush technique for unprotected complex bifurcation left main stenting: difference in procedural time, contrast volume and X-ray exposure and 3-years outcomes. Int J Card Imaging. 2019;35:207–214. doi: 10.1007/s10554-018-1497-8.
    1. Kern MJ, Ouellette D, Frianeza T. A new technique to anchor stents for exact placement in ostial stenoses: the stent tail wire or Szabo technique. Catheter Cardiovasc Interv. 2006;68:901–906. doi: 10.1002/ccd.20613.
    1. Lo H, Kern MJ. Use of a branch wire to anchor stents for exact placement proximal to bifurcation stents: the reverse Szabo technique. Catheter Cardiovasc Interv. 2006;67:904–907. doi: 10.1002/ccd.20761.
    1. Applegate RJ, Davis JM, Leonard JC. Treatment of ostial lesions using the Szabo technique: a case series. Catheter Cardiovasc Interv. 2008;72:823–828. doi: 10.1002/ccd.21723.
    1. Gutiérrez-Chico JL, Villanueva-Benito I, Villanueva-Montoto L, Vázquez-Fernández S, Kleinecke C, Gielen S, et al. Szabo technique versus conventional angiographic placement in bifurcations 010-001 of Medina and in aorto-ostial stenting: angiographic and procedural results. EuroIntervention. 2010;5:801–808. doi: 10.4244/EIJV5I7A134.
    1. Ferenc M, Ayoub M, Büttner H-J, Gick M, Comberg T, Rothe J, et al. Long-term outcomes of routine versus provisional T-stenting for de novo coronary bifurcation lesions: five-year results of the bifurcations Bad Krozingen I study. EuroIntervention. 2015;11:856–859. doi: 10.4244/EIJV11I8A175.
    1. Tanabe K, Hoye A, Lemos PA, Aoki J, Arampatzis CA, Saia F, et al. Restenosis rates following bifurcation stenting with sirolimus-eluting stents for de novo narrowings. Am J Cardiol. 2004;94:115–118. doi: 10.1016/j.amjcard.2004.03.040.
    1. Colombo A, Stankovic G, Orlic D, Corvaja N, Liistro F, Airoldi F, et al. Modified T-stenting technique with crushing for bifurcation lesions: immediate results and 30-day outcome. Catheter Cardiovasc Interv. 2003;60:145–151. doi: 10.1002/ccd.10622.
    1. Chevalier B, Glatt B, Royer T, Guyon P. Placement of coronary stents in bifurcation lesions by the “culotte” technique. Am J Cardiol. 1998;82:943–949. doi: 10.1016/S0002-9149(98)00510-4.
    1. Behan MW, Holm NR, de Belder AJ, Cockburn J, Erglis A, Curzen NP, et al. Coronary bifurcation lesions treated with simple or complex stenting: 5-year survival from patient-level pooled analysis of the Nordic bifurcation study and the British bifurcation coronary study. Eur Heart J. 2016;37:1923–8.
    1. Wong P. Two years experience of a simple technique of precise ostial coronary stenting. Catheter Cardiovasc Interv. 2008;72:331–334. doi: 10.1002/ccd.21558.
    1. Jain RK, Padmanabhan TNC, Chitnis N. Causes of failure with Szabo technique - an analysis of nine cases. Indian Heart J. 2013;65:264–268. doi: 10.1016/j.ihj.2013.04.023.
    1. Ferrer-Gracia M-C, Sánchez-Rubio J, Calvo-Cebollero I. Stent dislodgement during Szabo technique. Int J Cardiol. 2011;147:e8–e9. doi: 10.1016/j.ijcard.2008.12.215.

Source: PubMed

3
Prenumerera