The clinical outcomes of cementless unicompartmental knee replacement in patients with reduced bone mineral density

Hasan R Mohammad, James A Kennedy, Stephen J Mellon, Andrew Judge, Christopher A Dodd, David W Murray, Hasan R Mohammad, James A Kennedy, Stephen J Mellon, Andrew Judge, Christopher A Dodd, David W Murray

Abstract

Background: Osteoporosis and osteopenia are conditions characterised by reduced bone mineral density (BMD). There is concern that bone with reduced BMD may not provide sufficient fixation for cementless components which primarily rely on the quality of surrounding bone. The aim of our study was to report the midterm clinical outcomes of patients with reduced BMD undergoing cementless unicompartmental knee replacements (UKR). Our hypothesis was that there would be no difference in outcome between patients with normal bone and those with reduced BMD.

Methods: From a prospective cohort of 70 patients undergoing cementless UKR surgery, patients were categorised into normal (n = 20), osteopenic (n = 38) and osteoporotic groups (n = 12) based on their central dual-energy X-ray absorptiometry (DEXA) scans according to the World Health Organization criteria. Patients were followed up by independent research physiotherapists and outcome scores; Oxford Knee Score (OKS), Tegner score, American Knee Society Score Functional (AKSS-F) and Objective (AKSS-O) were recorded preoperatively and at a mean of 4 years postoperatively. The prevalence of reoperations, revisions and mortality was also recorded at a mean of 5 years postoperatively.

Results: There were no significant differences in the midterm postoperative OKS (P = 0.83), Tegner score (P = 0.17) and AKSS-O (P = 0.67). However, the AKSS-F was significantly higher (P = 0.04) in normal (90, IQR 37.5) compared to osteoporotic (65, IQR 35) groups. There were no significant differences (P = 0.82) between normal and osteopenic bone (80, IQR 35). The revision prevalence was 5%, 2.6% and 0% in the normal, osteopenic and osteoporotic groups respectively. The reoperation prevalence was 5%, 7.9% and 0% respectively. There were no deaths in any group related to the implant.

Conclusions: We found that patients with reduced BMD could safely undergo cementless UKR surgery and have similar clinical outcomes to those with normal BMD. However, larger studies with longer follow-up are needed to confirm our findings and ensure that cementless fixation is safe in patients with reduced BMD.

Keywords: Bone mineral density; Cementless; Oxford UKR.

Conflict of interest statement

HRM reports the Henni Mester Scholarship from University of Oxford, Royal College of Surgeons research grant and the Goodfellow Fellowship. JAK reports a grant to the University of Oxford from Zimmer Biomet. CAD and DM report royalties, consultancy payments related to knee replacements and a grant to the University of Oxford from Zimmer Biomet. AJ and SJM have no potential conflict of interest.

References

    1. UK National Joint Registry . UK National Joint Registry 15th Annual Report. National joint registry for England and Wales. 2018.
    1. Kanis JA, McCloskey EV, Johansson H, Oden A, Melton LJ, III, Khaltaev N. A reference standard for the description of osteoporosis. Bone. 2008;42(3):467–475. doi: 10.1016/j.bone.2007.11.001.
    1. Hernlund E, Svedbom A, Ivergård M, Compston J, Cooper C, Stenmark J, et al. Osteoporosis in the European Union: medical management, epidemiology and economic burden. Arch Osteoporos. 2013;8(1–2):136. doi: 10.1007/s11657-013-0136-1.
    1. Pisani P, Renna MD, Conversano F, Casciaro E, Di Paola M, Quarta E, et al. Major osteoporotic fragility fractures: risk factor updates and societal impact. World J Orthop. 2016;7(3):171. doi: 10.5312/wjo.v7.i3.171.
    1. James S, Mirza S, Culliford D, Taylor P, Carr A, Arden N. Baseline bone mineral density and bone turnover in pre-operative hip and knee arthroplasty patients. Bone Joint Res. 2014;3(1):14–19. doi: 10.1302/2046-3758.31.2000218.
    1. Pariente R, Olmos M, Hernandez H. Osteoporosis and osteoarthritis: two mutually exclusive diseases or two related entities? Rev Osteoporos Metab Miner. 2013;5(2):109–115. doi: 10.4321/S1889-836X2013000200008.
    1. Lacko M, Schreierova D, Cellar R, Vasko G. The incidence of osteopenia and osteoporosis in patients with cementless total hip arthroplasty. Acta Chir Orthop Traumatol Cechoslov. 2015;82(1):61–66.
    1. Aprato A, Risitano S, Sabatini L, Giachino M, Agati G, Massè A. Cementless total knee arthroplasty. Ann Transl Med. 2016;4(7):129.
    1. Rathsach Andersen M, Winther N, Lind T, Schrøder HM, Petersen MM. Bone remodeling of the proximal tibia after uncemented total knee arthroplasty: secondary endpoints analyzed from a randomized trial comparing monoblock and modular tibia trays—2 year follow-up of 53 cases. Acta Orthop. 2019;90(5):479–483. doi: 10.1080/17453674.2019.1637178.
    1. Mohammad HR, Campi S, Murray D, Mellon S. Instruments to reduce the risk of tibial fracture following cementless unicompartmental knee replacement. Knee. 2018;25(6):988–996. doi: 10.1016/j.knee.2018.09.001.
    1. Lee RW, Volz RG, Sheridan DC. The role of fixation and bone quality on the mechanical stability of tibial knee components. Clin Orthop Relat Res. 1991;273:177–183.
    1. Therbo M, Petersen M, Varmarken J-E, Olsen C, Lund B. Influence of pre-operative bone mineral content of the proximal tibia on revision rate after uncemented knee arthroplasty. J Bone Joint Surg Br. 2003;85(7):975–979. doi: 10.1302/0301-620X.85B7.13882.
    1. National Institute for Health and Care Excellence . Osteoporosis: assessing the risk of fragility fracture. 2017.
    1. Mohammad HR, Kennedy JA, Mellon SJ, Judge A, Dodd CA, Murray DW. Ten-year clinical and radiographic results of 1000 cementless Oxford unicompartmental knee replacements. Knee Surg Sports Traumatol Arthrosc. 2019:1–9.
    1. Goodfellow J, O'Connor J, Pandit H, Dodd C, Murray D. Unicompartmental arthroplasty with the Oxford knee, vol. 2016. 2nd ed: Goodfellow Publishers Ltd. Oxford: Goodfellow Publishers Ltd; 2016.
    1. World Health Organization . Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: report of a WHO study group [meeting held in Rome from 22 to 25 June 1992] 1994.
    1. Murray D, Fitzpatrick R, Rogers K, Pandit H, Beard D, Carr A, et al. The use of the Oxford hip and knee scores. J Bone Joint Surg Br. 2007;89(8):1010–1014. doi: 10.1302/0301-620X.89B8.19424.
    1. Insall JN, Dorr LD, Scott RD, Scott WN. Rationale of the Knee Society clinical rating system. Clin Orthop Relat Res. 1989;248(248):13–14.
    1. Tegner Y, Lysholm J. Rating systems in the evaluation of knee ligament injuries. Clin Orthop Relat Res. 1985;198:43–49.
    1. Pandit H, Hamilton T, Jenkins C, Mellon S, Dodd C, Murray D. The clinical outcome of minimally invasive Phase 3 Oxford unicompartmental knee arthroplasty: a 15-year follow-up of 1000 UKAs. Bone Joint J. 2015;97(11):1493–1500. doi: 10.1302/0301-620X.97B11.35634.
    1. Harris K, Dawson J, Doll H, Field RE, Murray DW, Fitzpatrick R, et al. Can pain and function be distinguished in the Oxford Knee Score in a meaningful way? An exploratory and confirmatory factor analysis. Qual Life Res. 2013;22(9):2561–2568. doi: 10.1007/s11136-013-0393-x.
    1. General OS. Bone health and osteoporosis: a report of the Surgeon General. 2004.
    1. Farhat GN, Cauley JA. The link between osteoporosis and cardiovascular disease. Clin Cases Miner Bone Metab. 2008;5(1):19.
    1. Inoue D, Watanabe R, Okazaki R. COPD and osteoporosis: links, risks, and treatment challenges. Int J Chron Obstruct Pulmon Dis. 2016;11:637. doi: 10.2147/COPD.S79638.
    1. Benedetti MG, Furlini G, Zati A, Letizia MG. The effectiveness of physical exercise on bone density in osteoporotic patients. Biomed Res Int. 2018;2018:4840531. doi: 10.1155/2018/4840531.
    1. Deere K, Sayers A, Rittweger J, Tobias JH. Habitual levels of high, but not moderate or low, impact activity are positively related to hip BMD and geometry: results from a population-based study of adolescents. J Bone Miner Res. 2012;27(9):1887–1895. doi: 10.1002/jbmr.1631.
    1. Turner C, Robling A. Exercises for improving bone strength. Br J Sports Med. 2005;39(4):188–189. doi: 10.1136/bjsm.2004.016923.
    1. Cho W, Kim M, Youm Y. Knee joint arthroplasty: Springer. 2014.
    1. Hooper G, Gilchrist N, Maxwell R, March R, Heard A, Frampton C. The effect of the Oxford uncemented medial compartment arthroplasty on the bone mineral density and content of the proximal tibia. Bone Joint J. 2013;95(11):1480–1483. doi: 10.1302/0301-620X.95B11.31509.
    1. Richmond BI, Hadlow SV, Lynskey TG, Walker CG, Munro JT. Proximal tibial bone density is preserved after unicompartmental knee arthroplasty. Clin Orthop Relat Res. 2013;471(5):1661–1669. doi: 10.1007/s11999-013-2784-2.
    1. Seki T, Omori G, Koga Y, Suzuki Y, Ishii Y, Takahashi HE. Is bone density in the distal femur affected by use of cement and by femoral component design in total knee arthroplasty? J Orthop Sci. 1999;4(3):180–186. doi: 10.1007/s007760050091.
    1. Tuncer M, Patel R, Cobb JP, Hansen UN, Amis AA. Variable bone mineral density reductions post-unicompartmental knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2015;23(8):2230–2236. doi: 10.1007/s00167-014-3014-5.
    1. Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ. 1996;312(7041):1254–1259. doi: 10.1136/bmj.312.7041.1254.
    1. Blake GM, Fogelman I. The role of DXA bone density scans in the diagnosis and treatment of osteoporosis. Postgrad Med J. 2007;83(982):509–517. doi: 10.1136/pgmj.2007.057505.
    1. Donato P, Pepe J, Colangelo L, Danese V, Cecchetti V, Minisola S, et al. Adherence to bisphosphonates in the general population: a study in patients referred to a primary care service. Arch Osteoporos. 2019;14(1):42. doi: 10.1007/s11657-019-0593-2.
    1. Abramsson L, Gustafsson M. Adherence to bisphosphonates among people admitted to an orthopaedic and geriatric ward at a university hospital in Sweden. Pharmacy (Basel). 2018;6(1):20.

Source: PubMed

3
Prenumerera