Changes in brain-behavior relationships following a 3-month pilot cognitive intervention program for adults with traumatic brain injury

S Porter, I J Torres, W Panenka, Z Rajwani, D Fawcett, A Hyder, N Virji-Babul, S Porter, I J Torres, W Panenka, Z Rajwani, D Fawcett, A Hyder, N Virji-Babul

Abstract

Facilitating functional recovery following brain injury is a key goal of neurorehabilitation. Direct, objective measures of changes in the brain are critical to understanding how and when meaningful changes occur, however, assessing neuroplasticity using brain based results remains a significant challenge. Little is known about the underlying changes in functional brain networks that correlate with cognitive outcomes in traumatic brain injury (TBI). The purpose of this pilot study was to assess the feasibility of an intensive three month cognitive intervention program in individuals with chronic TBI and to evaluate the effects of this intervention on brain-behavioral relationships. We used tools from graph theory to evaluate changes in global and local brain network features prior to and following cognitive intervention. Network metrics were calculated from resting state electroencephalographic (EEG) recordings from 10 adult participants with mild to severe brain injury and 11 age and gender matched healthy controls. Local graph metrics showed hyper-connectivity in the right inferior frontal gyrus and hypo-connectivity in the left inferior frontal gyrus in the TBI group at baseline in comparison with the control group. Following the intervention, there was a statistically significant increase in the composite cognitive score in the TBI participants and a statistically significant decrease in functional connectivity in the right inferior frontal gyrus. In addition, there was evidence of changes in the brain-behavior relationships following intervention. The results from this pilot study provide preliminary evidence for functional network reorganization that parallels cognitive improvements after cognitive rehabilitation in individuals with chronic TBI.

Keywords: Evidence-based medicine; Neurology; Rehabilitation.

Figures

Fig. 1
Fig. 1
Baseline functional connectivity measures showing differences between TBI − Baseline and controls in local connectivity measures. (A. F10 Hub Value; B. F7 Degree; C. F7 Betweenness; D. F7Hub Value).
Fig. 2
Fig. 2
Post-intervention connectivity measures for TBI − Baseline, TBI − 3 Months Post Intervention compared to Controls, showing significant changes after 3 months in F10 Degree (A.), F10 Betweenness (B.) and F10 F10Hub Value (C.).
Fig. 3
Fig. 3
Scatter plot showing relationship between Global Density and Global composite score in controls, TBI participants at baseline and TBI participants at 3 months post intervention.
Fig. 4
Fig. 4
(A). Scatter plot showing the relationship between RAVALT and Density in controls, TBI participants at baseline and TBI participants at 3 months post intervention. (B). Scatter plot showing the relationship between RAVALT and F10 Degree in controls, TBI participants at baseline and TBI participants at 3 months post intervention.

References

    1. Arnemann K.L., Chen A.J., Novakovic-Agopian T., Gratton C., Nomura E.M., D'Esposito M. Functional brain network modularity predicts response to cognitive training after brain injury. Neurology. 2015;84(15):1568–1574.
    1. Borich M., Babul A.N., Huang P.H., Boyd L., Virji-Babul N. Alterations in resting state brain networks in concussed adolescent athletes. J. Neurotrauma. 2014
    1. Bressler S.L., Menon V. Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn. Sci. 2010;14(6):277–290.
    1. Broglio S.P., Puetz T.W. The effect of sport concussion on neurocognitive function, self-report symptoms and postural control: a meta-analysis. Sports Med. 2008;38(1):53–67.
    1. Bullmore E., Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 2009;10(3):186–198.
    1. Caeyenberghs K., Leemans A., Heitger M.H., Leunissen I., Dhollander T., Sunaert S., Swinnen S.P. Graph analysis of functional brain networks for cognitive control of action in traumatic brain injury. Brain. 2012;135(Pt 4):1293–1307.
    1. Caeyenberghs K., Metzler-Baddeley C., Foley S., Jones D.K. Dynamics of the Human Structural Connectome Underlying Working Memory Training. J. Neurosci. 2016;36(14):4056–4066.
    1. Cicerone K.D., Langenbahn D.M., Braden C., Malec J.F., Kalmar K., Fraas M., Ashman T. Evidence-based cognitive rehabilitation: updated review of the literature from 2003 through 2008. Arch. Phys. Med. Rehabil. 2011;92(4):519–530.
    1. Cook L.G., Chapman S.B., Elliott A.C., Evenson N.N., Vinton K. Cognitive gains from gist reasoning training in adolescents with chronic-stage traumatic brain injury. Front Neurol. 2014;5:87.
    1. Derogatis L.R., Melisaratos N. The Brief Symptom Inventory: an introductory report. Psychol. Med. 1983;13(3):595–605.
    1. Finkelstein E.A., Phaedra S.C., Ted R.M. Oxford University Press; 2006. Incidence and economic burden of injuries in the United States.
    1. Friston K.J. Functional and effective connectivity: a review. Brain Connect. 2011;1(1):13–36.
    1. Hillary F.G., Rajtmajer S.M., Roman C.A., Medaglia J.D., Slocomb-Dluzen J.E., Calhoun V.D., Wylie G.R. The rich get richer: brain injury elicits hyperconnectivity in core subnetworks. PLoS One. 2014;9(8)
    1. Hillary F.G., Roman C.A., Venkatesan U., Rajtmajer S.M., Bajo R., Castellanos N.D. Hyperconnectivity is a fundamental response to neurological disruption. Neuropsychology. 2015;29(1):59–75.
    1. Jolles D.D., van Buchem M.A., Crone E.A., Rombouts S.A. Functional brain connectivity at rest changes after working memory training. Hum. Brain Mapp. 2013;34(2):396–406.
    1. Kennedy M.R.T., Coelho C., Turkstra L., Ylvisaker M., Sohlberg M.M., Yorkston K., Kan P.F. Intervention for executive functions after traumatic brain injury: A systematic review, meta-analysis and clinical recommendations. Neuropsychol. Rehabil. 2008;18(3):257–299.
    1. Koessler L., Maillard L., Benhadid A., Vignal J.P., Felblinger J., Vespignani H., Braun M. Automated cortical projection of EEG sensors: anatomical correlation via the international 10-10 system. Neuroimage. 2009;46(1):64–72.
    1. Kraus J., Schaffer K., Ayers K., Stenehjem J., Shen H., Afifi A.A. Physical complaints, medical service use, and social and employment changes following mild traumatic brain injury: a 6-month longitudinal study. J. Head Trauma Rehabil. 2005;20(3):239–256.
    1. Kroenke K., Spitzer R.L., Williams J.B. The PHQ-9: validity of a brief depression severity measure. J. Gen. Intern. Med. 2001;16(9):606–613.
    1. Kundu B., Sutterer D.W., Emrich S.M., Postle B.R. Strengthened effective connectivity underlies transfer of working memory training to tests of short-term memory and attention. J. Neurosci. 2013;33(20):8705–8715.
    1. Langlois J.A., Rutland-Brown W., Wald M.M. The epidemiology and impact of traumatic brain injury: a brief overview. J. Head Trauma Rehabil. 2006;21(5):375–378.
    1. Latora V., Marchiori M. Efficient behavior of small-world networks. Phys. Rev. Lett. 2001;87(19):198701.
    1. Lezak M.D., Lezak M.D. Oxford University Press; New York: 2004. Neuropsychological assessment, Oxford.
    1. Li J., Wang Z.J. Controlling the false discovery rate of the association/causality structure learned with the PC algorithm. J. Mach. Learn. Res. 2009;10(2):475–514.
    1. Malec J.F., Brown A.W., Leibson C.L., Flaada J.T., Mandrekar J.N., Diehl N.N., Perkins P.K. The mayo classification system for traumatic brain injury severity. J. Neurotrauma. 2007;24(9):1417–1424.
    1. McAllister T.W., Flashman L.A., McDonald B.C., Saykin A.J. Mechanisms of working memory dysfunction after mild and moderate TBI: evidence from functional MRI and neurogenetics. J. Neurotrauma. 2006;23(10):1450–1467.
    1. Menon D.K., Schwab K., Wright D.W., Maas A.I., Demographics, Clinical Assessment Working Group of the, International, . . . Psychological, Health Position statement: definition of traumatic brain injury. Arch Phys Med Rehabil. 2010;91(11):1637–1640.
    1. Nakamura T., Hillary F.G., Biswal B.B. Resting network plasticity following brain injury. PLoS One. 2009;4(12)
    1. Newman M.E., Girvan M. Finding and evaluating community structure in networks. Phys. Rev. E Stat. Nonlin. Soft. Matter Phys. 2004;69(2 Pt 2):026113.
    1. Pandit A.S., Expert P., Lambiotte R., Bonnelle V., Leech R., Turkheimer F.E., Sharp D.J. Traumatic brain injury impairs small-world topology. Neurology. 2013;80(20):1826–1833.
    1. Podell K., Gifford K., Bougakov D., Goldberg E. Neuropsychological assessment in traumatic brain injury. Psychiatr. Clin. North Am. 2010;33(4):855–876.
    1. Rabinowitz A.R., Levin H.S. Cognitive sequelae of traumatic brain injury. Psychiatr. Clin. North Am. 2014;37(1):1–11.
    1. Reitan Ralph M., Wolfson Deborah. Neuropsychology Press; S. Tucson, Arizona: 1993. The Halstead-Reitan neuropsychological test battery: theory and clinical interpretation.
    1. Rubinov M., Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage. 2010;52(3):1059–1069.
    1. Sheehan D.V., Lecrubier Y., Sheehan K.H., Amorim P., Janavs J., Weiller E., Dunbar, GC The Mini-International Neuropsychiatric Interview (M. I. N. I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J. Clin. Psychiatry. 1998;59(Suppl 20):22–33. quiz 34-57.
    1. Spitzer R.L., Kroenke K., Williams J.B., Lowe B. A brief measure for assessing generalized anxiety disorder: the GAD-7. Arch. Intern. Med. 2006;166(10):1092–1097.
    1. Sundermann B., Pfleiderer B. Functional connectivity profile of the human inferior frontal junction: involvement in a cognitive control network. BMC Neurosci. 2012;13:119.
    1. Teasdale G., Jennett B. Assessment of coma and impaired consciousness. A practical scale. Lancet. 1974;2(7872):81–84.
    1. Virji-Babul N., Hilderman C.G., Makan N., Liu A., Smith-Forrester J., Franks C., Wang Z.J. Changes in functional brain networks following sports-related concussion in adolescents. J. Neurotrauma. 2014;31(23):1914–1919.
    1. Watts D.J., Strogatz S.H. Collective dynamics of ‘small-world' networks. Nature. 1998;393(6684):440–442.
    1. Wu J., Zhang J., Liu C., Liu D., Ding X., Zhou C. Graph theoretical analysis of EEG functional connectivity during music perception. Brain Res. 2012;1483:71–81.

Source: PubMed

3
Prenumerera