Eave tubes for malaria control in Africa: prototyping and evaluation against Anopheles gambiae s.s. and Anopheles arabiensis under semi-field conditions in western Kenya

Janneke Snetselaar, Basilio N Njiru, Beatrice Gachie, Phillip Owigo, Rob Andriessen, Katey Glunt, Anne J Osinga, James Mutunga, Marit Farenhorst, Bart G J Knols, Janneke Snetselaar, Basilio N Njiru, Beatrice Gachie, Phillip Owigo, Rob Andriessen, Katey Glunt, Anne J Osinga, James Mutunga, Marit Farenhorst, Bart G J Knols

Abstract

Background: Whilst significant progress has been made in the fight against malaria, vector control continues to rely on just two insecticidal methods, i.e., indoor residual spraying and insecticidal bed nets. House improvement shows great potential to complement these methods and may further reduce indoor mosquito biting and disease transmission. Open eaves serve as important mosquito house entry points and provide a suitable location for intercepting host-seeking anophelines. This study describes semi-field experiments in western Kenya with eave tubes, a household protection product that leverages the natural behaviour of host-seeking malaria mosquitoes.

Methods: Semi-field experiments were conducted in two screen-houses. In both of these a typical western Kenyan house, with mud walls and corrugated iron sheet roofing, was built. Eave tubes with bendiocarb- or deltamethrin-treated eave tube inserts were installed in the houses, and the impact on house entry of local strains of Anopheles gambiae and Anopheles arabiensis was determined. Experiments with open eave tubes (no netting) were conducted as a control and to determine house entry through eave tubes. Insecticidal activity of the inserts treated with insecticide was examined using standard 3-min exposure bioassays.

Results: Experiments with open eave tubes showed that a high percentage of released mosquitoes entered the house through tubes during experimental nights. When tubes were fitted with bendiocarb- or deltamethrin-treated inserts, on average 21% [95% CI 18-25%] and 39% [CI 26-51%] of An. gambiae s.s. were recaptured the following morning, respectively. This contrasts with 71% [CI 60-81%] in the treatment with open eaves and 54% [CI 47-61%] in the treatment where inserts were treated with fluorescent dye powder. For An. arabiensis recapture was 21% [CI 14-27%] and 22% [CI 18-25%], respectively, compared to 46% [CI 40-52%] and 25% [CI 15-35%] in the treatments with open tubes and fluorescent dye.

Conclusions: Insecticide-treated eave tubes resulted in significant reductions in recapture rates for both malaria vector species, representing the first and promising results with this novel control tool against Kenyan malaria vectors. Further field evaluation of eave tubes under more realistic field conditions, as well as their comparison with existing approaches in terms of cost-effectiveness and community acceptance, is called for.

Keywords: Anopheles arabiensis; Anopheles gambiae; Eave tubes; House improvement; Kenya; Semi-field system.

Figures

Fig. 1
Fig. 1
a Experimental house (3 × 3 m) inside screen-house with mud wall, corrugated iron roofing, screened window and door. b Inside the house with untreated bed net, sealed eaves and eave tubes. c Eave tube with treated insert as seen from the outside
Fig. 2
Fig. 2
Eave tube prototypes. Originally, electrostatic netting was fitted over the PVC pipe using a rubber or PVC ring (ac). Subsequently a second generation of tubes with special inserts (df and gi) was developed. Unfortunately these inserts were too close to the outside of the house, which resulted in the development of an eave tube insert that can slide inside the PVC pipe (j), can easily be stacked (k), and is slightly conical to fit in different diameter tubes (l). 250 of these eave tube inserts (l) can be packed in a box of 60 × 40 × 40 cm
Fig. 3
Fig. 3
Mortality of An. gambiae s.s. 24 h after a 1-min exposure to control or insecticide-treated netting at 18 or 27 °C. While deltamethrin killed all mosquitoes regardless of temperature, bendiocarb was significantly less lethal at 18 than at 27 °C (p < 0.001)
Fig. 4
Fig. 4
House entry by mosquitoes through open eave tubes. For An. gambiae s.s., 92% of the released mosquitoes were retrieved indoors (light blue backpack aspirator, dark blue CDC light trap, the rest outdoors (white backpack aspirator). For An. arabiensis, indoor captures totalled 76%
Fig. 5
Fig. 5
Temperature and relative humidity inside (squares) and outside (diamonds) the experimental house during the experimental period. Measurements of temperature and humidity were taken at 30 min intervals. Environmental data was collected between 19:00 and 7:00 h. Horizontal stripes represent the average per experimental night

References

    1. Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526:207–211. doi: 10.1038/nature15535.
    1. WHO. World Malaria Report 2016. Geneva: World Health Organization; 2016.
    1. Diabate A, Baldet T, Chandre F, Akogbeto M, Guiguemde TR, Darriet F, et al. The role of agricultural use of insecticides in resistance to pyrethroids in Anopheles gambiae s.l. in Burkina Faso. Am J Trop Med Hyg. 2002;67:617–622. doi: 10.4269/ajtmh.2002.67.617.
    1. Nauen R. Insecticide resistance in disease vectors of public health importance. Pest Manag Sci. 2007;63:628–633. doi: 10.1002/ps.1406.
    1. Hemingway J, Ranson H. Insecticide resistance in insect vectors of human disease. Annu Rev Entomol. 2000;45:371–391. doi: 10.1146/annurev.ento.45.1.371.
    1. Hemingway J. The role of vector control in stopping the transmission of malaria: threats and opportunities. Philos Trans R Soc Lond B Biol Sci. 2014;369:20130431. doi: 10.1098/rstb.2013.0431.
    1. Hemingway J, Beaty BJ, Rowland M, Scott TW, Sharp BL. The innovative vector control consortium: improved control of mosquito-borne diseases. Trends Parasitol. 2006;22:308–312. doi: 10.1016/j.pt.2006.05.003.
    1. malERA Consultative Group on Vector Control A research agenda for malaria eradication: vector control. PLoS Med. 2011;8:e1000401. doi: 10.1371/journal.pmed.1000401.
    1. Lindsay SW, Emerson PM, Charlwood JD. Reducing malaria by mosquito-proofing houses. Trends Parasitol. 2002;18:510–514. doi: 10.1016/S1471-4922(02)02382-6.
    1. Anderson L, Simpson D, Stephens M. Durable housing improvements to fight malaria transmission: can we learn new strategies from past experience? Atlanta: Habitat for Humanity International Global Programs Department; 2014.
    1. Tusting LS, Ippolito MM, Willey BA, Kleinschmidt I, Dorsey G, Gosling RD, et al. The evidence for improving housing to reduce malaria: a systematic review and meta-analysis. Malar J. 2015;14:209. doi: 10.1186/s12936-015-0724-1.
    1. Huho B, Briet O, Seyoum A, Sikaala C, Bayoh N, Gimnig J, et al. Consistently high estimates for the proportion of human exposure to malaria vector populations occurring indoors in rural Africa. Int J Epidemiol. 2013;42:235–247. doi: 10.1093/ije/dys214.
    1. Kirby MJ, Ameh D, Bottomley C, Green C, Jawara M, Milligan PJ, et al. Effect of two different house screening interventions on exposure to malaria vectors and on anaemia in children in The Gambia: a randomised controlled trial. Lancet. 2009;374:998–1009. doi: 10.1016/S0140-6736(09)60871-0.
    1. Liu JX, Bousema T, Zelman B, Gesase S, Hashim R, Maxwell C, et al. Is housing quality associated with malaria incidence among young children and mosquito vector numbers? Evidence from Korogwe, Tanzania. PLoS ONE. 2014;9:e87358. doi: 10.1371/journal.pone.0087358.
    1. Njie M, Dilger E, Lindsay SW, Kirby MJ. Importance of eaves to house entry by anopheline, but not culicine, mosquitoes. J Med Entomol. 2009;46:505–510. doi: 10.1603/033.046.0314.
    1. Lwetoijera DW, Kiware SS, Mageni ZD, Dongus S, Harris C, Devine GJ, et al. A need for better housing to further reduce indoor malaria transmission in areas with high bed net coverage. Parasit Vectors. 2013;6:57. doi: 10.1186/1756-3305-6-57.
    1. Wanzirah H, Tusting LS, Arinaitwe E, Katureebe A, Maxwell K, Rek J, et al. Mind the gap: house structure and the risk of malaria in Uganda. PLoS ONE. 2015;10:e0117396. doi: 10.1371/journal.pone.0117396.
    1. Lindsay SW, Snow RW. The trouble with eaves; house entry by vectors of malaria. Trans R Soc Trop Med Hyg. 1988;82:645–646. doi: 10.1016/0035-9203(88)90546-9.
    1. Roozendaal JA. Vector control: methods for use by individuals and communities. Geneva: World Health Organization; 1997.
    1. Cuzin-Ouattara N, Van den Broek AH, Habluetzel A, Diabate A, Sanogo-Ilboudo E, Diallo DA, et al. Wide-scale installation of insecticide-treated curtains confers high levels of protection against malaria transmission in a hyperendemic area of Burkina Faso. Trans R Soc Trop Med Hyg. 1999;93:473–479. doi: 10.1016/S0035-9203(99)90343-7.
    1. Habluetzel A, Diallo DA, Esposito F, Lamizana L, Pagnoni F, Lengeler C, et al. Do insecticide-treated curtains reduce all-cause child mortality in Burkina Faso? Trop Med Int Health. 1997;2:855–862. doi: 10.1046/j.1365-3156.1997.d01-413.x.
    1. Bradley J, Rehman AM, Schwabe C, Vargas D, Monti F, Ela C, et al. Reduced prevalence of malaria infection in children living in houses with window screening or closed eaves on Bioko Island, equatorial Guinea. PLoS ONE. 2013;8:e80626. doi: 10.1371/journal.pone.0080626.
    1. Atieli H, Menya D, Githeko A, Scott T. House design modifications reduce indoor resting malaria vector densities in rice irrigation scheme area in western Kenya. Malar J. 2009;8:108. doi: 10.1186/1475-2875-8-108.
    1. Animut A, Balkew M, Lindtjorn B. Impact of housing condition on indoor-biting and indoor-resting Anopheles arabiensis density in a highland area, central Ethiopia. Malar J. 2013;12:393. doi: 10.1186/1475-2875-12-393.
    1. Lengeler C. Insecticide-treated bed nets and curtains for preventing malaria. Cochrane Database Syst Rev. 2002;2:CD000363.
    1. Knols BGJ, Farenhorst M, Andriessen R, Snetselaar J, Suer RA, Osinga AJ, et al. Eave tubes for malaria control in Africa: an introduction. Malar J. 2016;15:404. doi: 10.1186/s12936-016-1452-x.
    1. Sternberg ED, Ng’habi KR, Lyimo IN, Kessy ST, Farenhorst M, Thomas MB, et al. Eave tubes for malaria control in Africa: initial development and semi-field evaluations in Tanzania. Malar J. 2016;15:447. doi: 10.1186/s12936-016-1499-8.
    1. Andriessen R, Snetselaar J, Suer RA, Osinga AJ, Deschietere J, Lyimo IN, et al. Electrostatic coating enhances bioavailability of insecticides and breaks pyrethroid resistance in mosquitoes. Proc Natl Acad Sci USA. 2015;112:12081–12086. doi: 10.1073/pnas.1510801112.
    1. Snetselaar J, Andriessen R, Suer RA, Osinga AJ, Knols BG, Farenhorst M. Development and evaluation of a novel contamination device that targets multiple life-stages of Aedes aegypti. Parasit Vectors. 2014;7:200. doi: 10.1186/1756-3305-7-200.
    1. Knols BG, Njiru BN, Mathenge EM, Mukabana WR, Beier JC, Killeen GF. MalariaSphere: a greenhouse-enclosed simulation of a natural Anopheles gambiae (Diptera: Culicidae) ecosystem in western Kenya. Malar J. 2002;1:19. doi: 10.1186/1475-2875-1-19.
    1. Odiere M, Bayoh MN, Gimnig J, Vulule J, Irungu L, Walker E. Sampling outdoor, resting Anopheles gambiae and other mosquitoes (Diptera: Culicidae) in western Kenya with clay pots. J Med Entomol. 2007;44:14–22. doi: 10.1093/jmedent/41.5.14.
    1. WHO. Guidelines for testing mosquito alduticides for indoor residual spraying and treatment of mosquito nets. Geneva: World Health Organization; 2006.
    1. Sternberg ED, Waite JL, Thomas MB. Evaluating the efficacy of biological and conventional insecticides with the new ‘MCD bottle’ bioassay. Malar J. 2014;13:499. doi: 10.1186/1475-2875-13-499.
    1. Mboera LE, Kihonda J, Braks MA, Knols BG. Short report: influence of centers for disease control light trap position, relative to a human-baited bed net, on catches of Anopheles gambiae and Culex quinquefasciatus in Tanzania. Am J Trop Med Hyg. 1998;59:595–596. doi: 10.4269/ajtmh.1998.59.595.
    1. Verhulst NO, Loonen JA, Takken W. Advances in methods for colour marking of mosquitoes. Parasit Vectors. 2013;6:200. doi: 10.1186/1756-3305-6-200.
    1. White GB. Anopheles gambiae complex and disease transmission in Africa. Trans R Soc Trop Med Hyg. 1974;68:278–301. doi: 10.1016/0035-9203(74)90035-2.
    1. Von Seidlein L, Ikonomidis K, Bruun R, Jawara M, Pinder M, Knols BG, et al. Airflow attenuation and bed net utilization: observations from Africa and Asia. Malar J. 2012;11:200. doi: 10.1186/1475-2875-11-200.
    1. Waite JL, Lynch PA, Thomas MB. Eave tubes for malaria control in Africa: a modelling assessment of potential impact on transmission. Malar J. 2016;15:449. doi: 10.1186/s12936-016-1505-1.
    1. Abbott M, Johns B. PMI IRS Country Programs: Comparative Cost Analysis, August 11, 2011–December 31, 2012. Africa Indoor Residual Spraying (AIRS) Project, Abt Associates Inc., Bethesda; 2013.
    1. WHO. Global plan for insecticide resistance management in malaria vectors. Geneva: World Health Organization; 2012.
    1. Ogoma SB, Lweitoijera DW, Ngonyani H, Furer B, Russell TL, Mukabana WR, et al. Screening mosquito house entry points as a potential method for integrated control of endophagic filariasis, arbovirus and malaria vectors. PLoS Negl Trop Dis. 2010;4:e773. doi: 10.1371/journal.pntd.0000773.
    1. Wilson AL, Dhiman RC, Kitron U, Scott TW, Van den Berg H, Lindsay SW. Benefit of insecticide-treated nets, curtains and screening on vector borne diseases, excluding malaria: a systematic review and meta-analysis. PLoS Negl Trop Dis. 2014;8:e3228. doi: 10.1371/journal.pntd.0003228.
    1. Golding N, Wilson AL, Moyes CL, Cano J, Pigott DM, Velayudhan R, et al. Integrating vector control across diseases. BMC Med. 2015;13:249. doi: 10.1186/s12916-015-0491-4.
    1. Okumu FO. The paradigm of eave tubes: scaling up house improvement and optimizing insecticide delivery against disease-transmitting mosquitoes. Malar J. 2017;16:207. doi: 10.1186/s12936-017-1859-z.

Source: PubMed

3
Prenumerera