Lung ultrasound in the critically ill

Daniel A Lichtenstein, Daniel A Lichtenstein

Abstract

Lung ultrasound is a basic application of critical ultrasound, defined as a loop associating urgent diagnoses with immediate therapeutic decisions. It requires the mastery of ten signs: the bat sign (pleural line), lung sliding (yielding seashore sign), the A-line (horizontal artifact), the quad sign, and sinusoid sign indicating pleural effusion, the fractal, and tissue-like sign indicating lung consolidation, the B-line, and lung rockets indicating interstitial syndrome, abolished lung sliding with the stratosphere sign suggesting pneumothorax, and the lung point indicating pneumothorax. Two more signs, the lung pulse and the dynamic air bronchogram, are used to distinguish atelectasis from pneumonia. All of these disorders were assessed using CT as the "gold standard" with sensitivity and specificity ranging from 90% to 100%, allowing ultrasound to be considered as a reasonable bedside "gold standard" in the critically ill. The BLUE-protocol is a fast protocol (<3 minutes), which allows diagnosis of acute respiratory failure. It includes a venous analysis done in appropriate cases. Pulmonary edema, pulmonary embolism, pneumonia, chronic obstructive pulmonary disease, asthma, and pneumothorax yield specific profiles. Pulmonary edema, e.g., yields anterior lung rockets associated with lung sliding, making the "B-profile." The FALLS-protocol adapts the BLUE-protocol to acute circulatory failure. It makes sequential search for obstructive, cardiogenic, hypovolemic, and distributive shock using simple real-time echocardiography (right ventricle dilatation, pericardial effusion), then lung ultrasound for assessing a direct parameter of clinical volemia: the apparition of B-lines, schematically, is considered as the endpoint for fluid therapy. Other aims of lung ultrasound are decreasing medical irradiation: the LUCIFLR program (most CTs in ARDS or trauma can be postponed), a use in traumatology, intensive care unit, neonates (the signs are the same than in adults), many disciplines (pulmonology, cardiology…), austere countries, and a help in any procedure (thoracentesis). A 1992, cost-effective gray-scale unit, without Doppler, and a microconvex probe are efficient. Lung ultrasound is a holistic discipline for many reasons (e.g., one probe, perfect for the lung, is able to scan the whole-body). Its integration can provide a new definition of priorities. The BLUE-protocol and FALLS-protocol allow simplification of expert echocardiography, a clear advantage when correct cardiac windows are missing.

Figures

Figure 1
Figure 1
Areas of investigation and the BLUE-points. Two hands placed this way (size equivalent to the patient’s hands, upper hand touching the clavicle, thumbs excluded) correspond to the location of the lung, and allow three standardized points to be defined. The upper-BLUE-point is at the middle of the upper hand. The lower-BLUE-point is at the middle of the lower palm. The PLAPS-point is defined by the intersection of: a horizontal line at the level of the lower BLUE-point; a vertical line at the posterior axillary line. Small probes, such as this Japanese microconvex one (1992), allow positioning posterior to this line as far as possible in supine patients, providing more sensitive detection of posterolateral alveolar or pleural syndromes (PLAPS). The diaphragm is usually at the lower end of the lower hand. Extract from “Whole body ultrasonography in the critically ill” (2010 Ed, Chapter 14), with kind permission of Springer Science.
Figure 2
Figure 2
Normal lung surface. Left: Scan of the intercostal space. The ribs (vertical arrows). Rib shadows are displayed below. The pleural line (upper, horizontal arrows), a horizontal hyperechoic line, half a centimeter below the rib line in adults. The proportions are the same in neonates. The association of ribs and pleural line make a solid landmark called the bat sign. The pleural line indicates the parietal pleura in all cases. Below the pleural line, this horizontal repetition artifact of the pleural line has been called the A-line (lower, small horizontal arrows). The A-line indicates that air (gas more precisely) is the component visible below the pleural line. Right: M-mode reveals the seashore sign, which indicates that the lung moves at the chest wall. The seashore sign therefore indicates that the pleural line also is the visceral pleura. Above the pleural line, the motionless chest wall displays a stratified pattern. Below the pleural line, the dynamics of lung sliding show this sandy pattern. Note that both images are strictly aligned, of importance in critical settings. Both images, i.e., lung sliding plus A-lines make the A-profile (when found at the anterior chest wall). They give basic information on the level of capillary pressure. Extract from “Whole body ultrasonography in the critically ill” (2010 Ed, Chapter 14), with kind permission of Springer Science.
Figure 3
Figure 3
Pleural effusion. Left and middle: minute pleural effusion at the PLAPS-point. Below the pleural line, a line regular and roughly parallel to the pleural line can be seen: the lung line, indicating the visceral pleura (arrows). This line, together with the pleural line and the shadow of the ribs, display a kind of quad: the quad sign. Right: M-mode shows a movement of the lung line (white arrows) toward the pleural line (black arrows) on inspiration—the sinusoid sign, indicating also a free pleural effusion, and a viscosity enabling the use of small caliper needle if thoracentesis is envisaged. E, expiration. Quantitative data: this effusion found at the PLAPS-point has an expiratory thickness of roughly 13 mm, i.e., an expectedly small volume (study in progress). A 15-mm distance is our minimum required for safe diagnostic or therapeutic puncture, allowing to simplify the problem of modeling the real volume of an effusion (Ref. 14). Extract from “Whole body ultrasonography in the critically ill” (2010 Ed, Chapter 15), with kind permission of Springer Science.
Figure 4
Figure 4
Lung consolidation. Two signs of lung consolidation. Left: a massive consolidation (probe at the PLAPS-point) invades the whole left lower lobe. No aerated lung tissue is present, and no fractal sign can be generated. The deep border is at the mediastinal line (arrows). The pattern is tissue-like, similar to the spleen (S). The thickness of this image is roughly 10 cm, a value incompatible with a pleural effusion. Image acquired using an ADR-4000 and a sectorial probe (1982 mobile technology) Right: a middle lobe consolidation, which does not invade the whole lobe. This generates a shredded, fractal boundary between the consolidation and the underlying aerated lung (arrows): the quite specific shred (or fractal) sign. Such an anterior consolidation generates the C-profile in the BLUE-protocol. Compare with the regular lung line of Figure 3. Note the blurred letters due to multiple transfers of this image. Quantitative data: a reasonable thickness at the right image is 5.5 cm, giving an index of 5.5 corresponding to a 165-mL consolidation, roughly. In the left image, the 10-cm depth would correspond to a volume of roughly 1 L. Adapted from “Whole body ultrasonography in the critically ill” (2010 Ed, Chapter 16), with kind permission of Springer Science.
Figure 5
Figure 5
Interstitial syndrome and the lung rockets. Two examples of interstitial syndrome. Left: four or five B-lines (see precise description in the text) are visible, called lung rockets (here septal rockets correlating with thickened subpleural interlobular septa). Middle: twice as many B-lines, called ground-glass rockets. Two examples of pulmonary edema (with ground glass areas on CT on the middle figure). Right: Z-lines for comparison. These parasites are ill-defined, short, and do not erase A-lines (arrows), among several criteria. Extract from “Whole body ultrasonography in the critically ill” (2010 Ed, Chapter 17), with kind permission of Springer Science.
Figure 6
Figure 6
Pneumothorax and the stratosphere sign. Left: same pattern as in Figure 2, i.e., pleural line with A-lines, indicating gas below the pleural line. Not visible on the left image, lung sliding is totally absent. Right: here on M-mode, the abolition of lung sliding is visible through the stratosphere sign (which replaces the seashore sign) and indicates total absence of motion. This suggests pneumothorax as a possible cause (see others in text). Arrows: location of the pleural line. The combination of abolished lung sliding with A-lines, at the anterior chest wall, is the A’-profile of the BLUE-protocol (as opposed to the A-profile, where lung sliding is present, ruling out pneumothorax). Extract from “Whole body ultrasonography in the critically ill” (2010 Ed, Chapter 18), with kind permission of Springer Science.
Figure 7
Figure 7
Pneumothorax and the lung point. A specific sign of pneumothorax. Real-time mode allows detection of the inspiratory increase in volume of the collapsed lung. When reaching the chest wall where the probe is laid, it makes a sudden change in the ultrasound image, from an A’-profile to an A- or B-profile usually. The change is sudden because (using an appropriate equipment, without average filters or time lag mainly) ultrasound is a highly sensitive method, able to detect subtle changes, such as the difference between free gas and alveolar gas. The left image shows the pleural line just before the visceral pleura appears. The right image shows (arrow) the very moment the visceral pleura has touched the parietal pleural. This sign has been called lung point (it can be seen along a line, but one point is sufficient for the diagnosis). Video visible at CEURF.net. Extract from “Whole body ultrasonography in the critically ill” (2010 Ed, Chapter 18), with kind permission of Springer Science.
Figure 8
Figure 8
The BLUE-protocol decision tree. This decision tree, slightly modified from the original article (Chest 2008;134:117–125), with the permission of Chest, indicates a way proposed for immediate diagnosis of the main causes of acute respiratory failure, using a lung and venous ultrasound approach.

References

    1. Jardin F, Farcot JC, Boisante L, Curien N, Margairaz A, Bourdarias JP. Influence of positive end-expiratory pressure on left ventricle performance. New Engl J Med. 1981;4(7):387–392. doi: 10.1056/NEJM198102123040703.
    1. Dénier A. Les ultrasons, leur application au diagnostic. Presse Med. 1946;4:307–308.
    1. Slasky BS, Auerbach D, Skolnick ML. Value of portable real-time ultrasound in the intensive care unit. Crit Care Med. 1983;4:160–164. doi: 10.1097/00003246-198303000-00002.
    1. Weinberger SE, Drazen JM. Harrison’s principles of internal medicine. 16. New York: McGraw-Hill; 2005. Diagnostic procedures in respiratory diseases; pp. 1505–1508.
    1. Desai SR, Hansel DM. Lung imaging in the adult respiratory distress syndrome: current practice and new insights. Intensive Care Med. 1997;4:7–15. doi: 10.1007/s001340050284.
    1. Lichtenstein D, Axler O. Intensive use of general ultrasound in the intensive care unit (a prospective study of 150 consecutive patients) Intensive Care Med. 1993;4:353–355. doi: 10.1007/BF01694712.
    1. Lichtenstein D. L’échographie générale en réanimation. 1. Paris: Springer; 1992.
    1. Lichtenstein D, Mezière G. The BLUE-points: three standardized points used in the BLUE-protocol for ultrasound assessment of the lung in acute respiratory failure. Crit Ultrasound J. 2011;4:109–110. doi: 10.1007/s13089-011-0066-3.
    1. Lichtenstein D. Whole body ultrasonography in the critically ill. 2010. Heidelberg, Berlin, New York: Springer-Verlag;
    1. Lichtenstein D. Whole Body Ultrasonography in the Critically Ill. Heidelberg, Berlin, New York: Springer-Verlag; 2010. Classification of artifacts; pp. 185–188.
    1. Joyner CR, Herman RJ, Reid JM. Reflected ultrasound in the detection and localisation of pleural effusion. JAMA. 1967;4:399–402. doi: 10.1001/jama.1967.03120180087013.
    1. Lichtenstein D, Hulot JS, Rabiller A, Tostivint I, Mezière G. Feasibility and safety of ultrasound-aided thoracentesis in mechanically ventilated patients. Intensive Care Med. 1999;4:955–958. doi: 10.1007/s001340050988.
    1. Lichtenstein D, Goldstein I, Mourgeon E, Cluzel P, Grenier P, Rouby JJ. Comparative diagnostic performances of auscultation, chest radiography and lung ultrasonography in ARDS. Anesthesiology. 2004;4:9–15. doi: 10.1097/00000542-200401000-00006.
    1. Lichtenstein D. Whole Body Ultrasonography in the Critically Ill. Heidelberg, Berlin, New York: Springer-Verlag; 2010. Pleural effusion volume; pp. 132–133.
    1. Weinberg B, Diakoumakis EE, Kass EG, Seife B, Zvi ZB. The air bronchogram: sonographic demonstration. Am J Rontgenol. 1986;4:593–595. doi: 10.2214/ajr.147.3.593.
    1. Yang PC, Luh KT, Chang DB, Yu CJ, Kuo SH, Wu HD. Ultrasonographic evaluation of pulmonary consolidation. Am Rev Respir Dis. 1992;4:757–762. doi: 10.1164/ajrccm/146.3.757.
    1. Lichtenstein D, Lascols N, Mezière G, Gepner A. Ultrasound diagnosis of alveolar consolidation in the critically ill. Intensive Care Med. 2004;4:276–281. doi: 10.1007/s00134-003-2075-6.
    1. Lichtenstein D. Whole Body Ultrasonography in the Critically Ill. Heidelberg, Berlin, New York: Springer-Verlag; 2010. Lung consolidation; pp. 139–149.
    1. Lichtenstein D. Diagnostic échographique de l’oedème pulmonaire. Rev Im Med. 1994;4:561–562.
    1. Lichtenstein D, Mezière G, Biderman P, Gepner A, Barré O. The comet-tail artifact: an ultrasound sign of alveolar-interstitial syndrome. Am J Respir Crit Care Med. 1997;4:1640–1646. doi: 10.1164/ajrccm.156.5.96-07096.
    1. Kerley P. Radiology in heart disease. Br Med J. 1933;4:594. doi: 10.1136/bmj.2.3795.594.
    1. Lichtenstein D, Mezière G. A lung ultrasound sign allowing bedside distinction between pulmonary edema and COPD: the comet-tail artifact. Intensive Care Med. 1998;4:1331–1334. doi: 10.1007/s001340050771.
    1. Lichtenstein D, Mezière G, Biderman P, Gepner A. The comet-tail artifact, an ultrasound sign ruling out pneumothorax. Intensive Care Med. 1999;4:383–388. doi: 10.1007/s001340050862.
    1. Reissig A, Kroegel C. Transthoracic sonography of diffuse parenchymal lung disease: the role of comet tail artifacts. J Ultrasound Med. 2003;4:173–180.
    1. Jambrik Z, Monti S, Coppola V, Agricola E, Mottola G, Miniati M. et al.Usefulness of ultrasound lung comets as a nonradiologic sign of extravascular lung water. Am J Cardiol. 2004;4:1265–1270. doi: 10.1016/j.amjcard.2004.02.012.
    1. Volpicelli G, Mussa A, Garofalo G. et al.Bedside lung ultrasound in the assessment of alveolar-interstitial syndrome. Am J Emerg Med. 2006;4:689–696. doi: 10.1016/j.ajem.2006.02.013.
    1. Fagenholz PJ, Gutman JA, Murray AF, Noble VE, Thomas SH, Harris NS. Chest ultrasonography for the diagnosis and monitoring of high-altitude pulmonary edema. Chest. 2007;4:1013–1018. doi: 10.1378/chest.06-1864.
    1. Rantanen NW. Diseases of the thorax. Vet Clin North Am. 1986;4:49–66.
    1. Lichtenstein D, Holzapfel L, Frija J. Projection cutanée des pneumothorax et impact sur leur diagnostic échographique. Réan Urg. 2000;4(Suppl 2):138s.
    1. Lichtenstein D, Menu Y. A bedside ultrasound sign ruling out pneumothorax in the critically ill: lung sliding. Chest. 1995;4:1345–1348. doi: 10.1378/chest.108.5.1345.
    1. Dulchavsky SA, Hamilton DR, Diebel LN, Sargsyan AE, Billica RD, Williams DR. Thoracic ultrasound diagnosis of pneumothorax. J Trauma. 1999;4:970–971. doi: 10.1097/00005373-199911000-00029.
    1. Kirkpatrick AW, Sirois M, Laupland KB, Liu D, Rowan K, Ball CG. et al.Hand-held thoracic sonography for detecting post-traumatic pneumothoraces: the Extended Focused Assessment with Sonography for Trauma (EFAST) J Trauma. 2004;4(2):288–295. doi: 10.1097/01.TA.0000133565.88871.E4.
    1. Lichtenstein D. Whole Body Ultrasonography in the Critically Ill. Heidelberg, Berlin, New York: Springer-Verlag; 2010. Diaphragm; pp. 146–147.
    1. Soldati G, Testa A, Sher S, Pignataro G, La Sala M, Gentiloni Silveri N. Occult traumatic pneumothorax: diagnostic accuracy of lung ultrasonography in the emergency department. Chest. 2008;4:204–211. doi: 10.1378/chest.07-1595.
    1. Lichtenstein D, Mezière G, Biderman P, Gepner A. The lung point: an ultrasound sign specific to pneumothorax. Intensive Care Med. 2000;4:1434–1440. doi: 10.1007/s001340000627.
    1. Lichtenstein D, Mezière G. Relevance of lung ultrasound in the diagnosis of acute respiratory failure. The BLUE-protocol. Chest. 2008;4:117–125. doi: 10.1378/chest.07-2800.
    1. Lichtenstein D, Mezière G, Lascols N, Biderman P, Courret JP, Gepner A, Tenoudji-Cohen M. Ultrasound diagnosis of occult pneumothorax. Crit Care Med. 2005;4:1231–1238. doi: 10.1097/01.CCM.0000164542.86954.B4.
    1. Oveland NP, Lossius HM, Wemmelund K, Stokkeland PJ, Knudsen L, Sloth E. Using thoracic ultrasonography to accurately assess pneumothorax progression during positive pressure ventilation. A comparison with CT scanning. Chest. 2013;4(2):415–422. doi: 10.1378/chest.12-1445.
    1. Lichtenstein D, Lascols N, Prin S, Mezière G. The lung pulse: an early ultrasound sign of complete atelectasis. Intensive Care Med. 2003;4:2187–2192. doi: 10.1007/s00134-003-1930-9.
    1. Lichtenstein D. Whole Body Ultrasonography in the Critically Ill. Heidelberg, Berlin, New York: Springer-Verlag; 2010. Diaphragm; pp. 146–147.
    1. Ray P, Birolleau S, Lefort Y, Becquemin MH, Beigelman C, Isnard R. et al.Acute respiratory failure in the elderly: etiology, emergency diagnosis and prognosis. Crit Care. 2006;4(3):R82. doi: 10.1186/cc4926.
    1. Lichtenstein D. Whole Body Ultrasonography in the Critically Ill. Heidelberg, Berlin, New York: Springer-Verlag; 2010. BLUE-protocol; pp. 189–202.
    1. Mayo P, Beaulieu Y, Doelken P, Feller-Kopman D, Harrod C, Kaplan A, Oropello J, Vieillard-Baron A, Axler O, Lichtenstein D, Maury E, Slama M, Vignon P. ACCP/SRLF (American College of Chest Physicians/La Société de Réanimation de Langue Française) Statement on competence in critical care ultrasonography. Chest. 2009;4:1050–1060. doi: 10.1378/chest.08-2305.
    1. Copetti R, Soldati G, Copetti P. Chest sonography: a useful tool to differentiate acute cardiogenic pulmonary edema from acute respiratory distress syndrome. Cardiovasc Ultrasound. 2008;4:16. doi: 10.1186/1476-7120-6-16.
    1. Teboul JL, Asfar P, Bernardin G, Boulain T, Cariou A, Chemla D, De Backer D, Duranteau J, Feissel M, Leconte P, Lefrant JY, Mazerolles M, Michard F, Mion G, Orliaguet G, Richard C, Saulnier F, Slama M, Tavernier B, Vieillard-Baron A. Recommandations d’experts de la SRLF. Indicateurs du remplissage vasculaire au cours de l’insuffisance circulatoire. Réanimation. 2004;4:255–263.
    1. Lichtenstein D, Mezière G, Lagoueyte JF, Biderman P, Goldstein I, Gepner A. A-lines and B-lines: lung ultrasound as a bedside tool for predicting pulmonary artery occlusion pressure in the critically ill. Chest. 2009;4:1014–1020. doi: 10.1378/chest.09-0001.
    1. Staub NC. Pulmonary edema. Physiol Rev. 1974;4:678–811.
    1. Guyton CA, Hall JE. Textbook of medical physiology. 9. Philadelphia: W.B. Saunders Company; 1996. pp. 496–497.
    1. Gargani L, Lionetti V, Di Cristofano C. et al.Early detection of acute lung injury uncoupled to hypoxemia in pigs using ultrasound lung comets. Crit Care Med. 2007;4:2769–2774. doi: 10.1097/01.CCM.0000287525.03140.3F.
    1. Rivers E, Nguyen B, Havstad S. et al.Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;4:1368–1377. doi: 10.1056/NEJMoa010307.
    1. Lichtenstein D, Jardin F. Appréciation non invasive de la pression veineuse centrale par la mesure échographique du calibre de la veine cave inférieure en réanimation. Réanimation Urgences. 1994;4(2):79–82.
    1. Barbier C, Loubières Y, Schmitt JM, Hayon J, Ricôme JL, Jardin F, Vieillard-Baron A. Respiratory changes in IVC diameter are helpful in predicting fluid responsiveness in ventilated, septic patients. Intensive Care Med. 2004;4:1740–1746.
    1. Vieillard-Baron A, Chergui K, Rabiller A. et al.Superior vena caval collapsibility as a gauge of volume status in ventilated septic patients. Intensive Care Med. 2004;4:1734–1739.
    1. Lichtenstein D. Whole Body Ultrasonography in the Critically Ill. Heidelberg, Berlin, New York: Springer-Verlag; 2010. FALLS-protocol; pp. 223–241.
    1. Lichtenstein D. Whole Body Ultrasonography in the Critically Ill. Heidelberg, Berlin, New York: Springer-Verlag; 2010. The equipment; pp. 11–18.
    1. Lichtenstein D. Whole Body Ultrasonography in the Critically Ill. Heidelberg, Berlin, New York: Springer-Verlag; 2010. Cardiac arrest; pp. 279–291.
    1. Lichtenstein D, Courret JP. Feasibility of ultrasound in the helicopter. Intensive Care Med. 1998;4:1119. doi: 10.1007/s001340050730.
    1. Lichtenstein D, Mauriat P. Lung ultrasound in the critically ill neonate. Curr Pediatr Rev. 2012;4(3):217–223. doi: 10.2174/157339612802139389.
    1. Lichtenstein D. Ultrasound examination of the lungs in the intensive care unit. Pediatr Crit Care Med. 2009;4:693–698. doi: 10.1097/PCC.0b013e3181b7f637.
    1. Hendrikse K, Gramata J, ten Hove W, Rommes J, Schultz M, Spronk P. Low value of routine chest radiographs in a mixed medical-surgical ICU. Chest. 2007;4:823–828. doi: 10.1378/chest.07-1162.
    1. Tocino IM, Miller MH, Fairfax WR. Distribution of pneumothorax in the supine and semi-recumbent critically ill adult. Am J Roentgenol. 1985;4:901–905. doi: 10.2214/ajr.144.5.901.
    1. Hill SL, Edmisten T, Holtzman G, Wright A. The occult pneumothorax: an increasing diagnostic entity in trauma. Am Surg. 1999;4:254–258.
    1. McGonigal MD, Schwab CW, Kauder DR, Miller WT, Grumbach K. Supplemented emergent chest CT in the management of blunt torso trauma. J Trauma. 1990;4:1431–1435. doi: 10.1097/00005373-199012000-00001.
    1. Brenner DJ, Hall EJ. Computed Tomography - an increasing source of radiation exposure. N Engl J Med. 2007;4(22):2277–2284. doi: 10.1056/NEJMra072149.
    1. Lauer MS. Elements of danger - the case of medical imaging. N Engl J Med. 2009;4:841–843. doi: 10.1056/NEJMp0904735.
    1. Lichtenstein D, Peyrouset O. Lung ultrasound superior to CT? The example of a CToccult necrotizing pneumonia. Intensive Care Med. 2006;4:334–335. doi: 10.1007/s00134-005-0004-6.
    1. Lichtenstein D, Mezière G, Seitz J. The dynamic air bronchogram. An ultrasound sign of alveolar consolidation ruling out atelectasis. Chest. 2009;4:1421–1425. doi: 10.1378/chest.08-2281.
    1. Matamis D, Soilemezi E, Tsagourias M, Akoumianaki E, Dimassi S, Boroli F, Richard JC, Brochard L. Sonographic evaluation of the diaphragm in critically ill patients. Technique and clinical applications. Intensive Care Med. 2013;4(5):801–810. doi: 10.1007/s00134-013-2823-1.
    1. Lerolle N, Guérot E, Dimassi S, Zegdi R, Faisy C, Fagon JY, Diehl JL. Ultrasonographic diagnosis criterion for severe diaphragmatic dysfunction after cardiac surgery. Chest. 2009;4:401–407. doi: 10.1378/chest.08-1531.
    1. Vignon P, Chastagner C, Berkane V, Chardac E, Francois B, Normand S, Bonnivard M, Clavel M, Pichon N, Preux PM, Maubon A, Gastinne H. Quantitative assessment of pleural effusion in critically ill patients by means of ultrasonography. Crit Care Med. 2005;4:1757–1763. doi: 10.1097/01.CCM.0000171532.02639.08.
    1. Roch A, Bojan M, Michelet P, Romain F, Bregeon F, Papazian L, Auffray JP. Usefulness of ultrasonography in predicting pleural effusion > 500 mL in patients receiving mechanical ventilation. Chest. 2005;4:224–232. doi: 10.1378/chest.127.1.224.
    1. Balik M, Plasil P, Waldauf P, Pazout J, Fric M, Otahal M, Pachl J. Ultrasound estimation of volume of pleural fluid in mechanically ventilated patients. Intensive Care Med. 2006;4:318–321. doi: 10.1007/s00134-005-0024-2.
    1. Bouhemad B, Brisson H, Le-Guen M, Arbelot C, Lu Q, Rouby JJ. Bedside ultrasound assessment of positive end-expiratory pressure-induced lung recruitment. Am J Respir Crit Care Med. 2011;4:341–347. doi: 10.1164/rccm.201003-0369OC.
    1. Maury E, Guglielminotti J, Alzieu M, Guidet B, Offenstadt G. Ultrasonic examination: an alternative to chest radiography after central venous catheter insertion? Am J Respir Crit Care Med. 2001;4:403–405. doi: 10.1164/ajrccm.164.3.2009042.
    1. Sargsyan AE, Hamilton DR, Nicolaou S, Kirkpatrick AW, Campbell MR, Billica RD, Dawson D, Williams DR, Melton SL, Beck G, Forkheim K, Dulchavsky SA. Ultrasound evaluation of the magnitude of pneumothorax: a new concept. Am Surg. 2001;4:232–235.
    1. Rowan KR, Kirkpatrick AW, Liu D, Forkheim KE, Mayo JR, Nicolaou S. Traumatic pneumothorax. Detection with thoracic US: correlation with chest radiography and CT. Radiology. 2002;4:210–214. doi: 10.1148/radiol.2251011102.
    1. Mayo PH, Goltz HR, Tafreshi M, Doelken P. Safety of ultrasound-guided thoracentesis in patients receiving mechanical ventilation. Chest. 2004;4(3):1059–1062. doi: 10.1378/chest.125.3.1059.
    1. Mathis G, Blank W, Reissig A, Lechleitner P, Reuss J, Schuler A, Beckh S. Thoracic ultrasound for diagnosing pulmonary embolism. A prospective multicenter study of 352 patients. Chest. 2005;4:1531–1538. doi: 10.1378/chest.128.3.1531.
    1. Agricola E, Bove T, Oppizzi M, Marino G, Zangrillo A, Margonato A, Picano E. Ultrasound comet-tail images: a marker of pulmonary edema: a comparative study with wedge pressure and extravascular lung water. Chest. 2005;4:1690–1695. doi: 10.1378/chest.127.5.1690.
    1. Soldati G, Testa A, Silva FR, Carbone L, Portale G, Silveri NG. Chest ultrasonography in lung contusion. Chest. 2006;4(2):533–538. doi: 10.1378/chest.130.2.533.
    1. Bouhemad B, Zhang M, Lu Q, Rouby JJ. Clinical review : bedside lung ultrasound in critical care practice. Crit Care. 2007;4:205. doi: 10.1186/cc5668.
    1. Copetti R, Cattarossi L. The “double lung point”: an ultrasound sign diagnostic of transient tachypnea of the newborn. Neonatalogy. 2007;4(3):203–209. doi: 10.1159/000097454.
    1. Copetti R, Cattarossi L. Ultrasound diagnosis of pneumonia in children. Radiol Med (Torino) 2008;4(2):190–198. doi: 10.1007/s11547-008-0247-8. Epub 2008 Apr 2.
    1. Volpicelli G, Caramello V, Cardinale L. et al.Bedside ultrasound of the lung for the monitoring of acute decompensated heart failure. Am J Emerg Med. 2008;4:585–591. doi: 10.1016/j.ajem.2007.09.014.
    1. Tsung JW, Kessler DP, Shah VP. Prospective application of clinician-performed lung ultrasonography during the 2009 H1N1 influenza A pandemic: distinguishing viral from bacterial pneumonia. Crit Ultrasound J. 2012;4:16. doi: 10.1186/2036-7902-4-16.
    1. Shah VP, Tunik MG, Tsung JW. Prospective evaluation of point-of-care ultrasonography for the diagnosis of pneumonia in children and young adults. JAMA Pediatr. 2013;4:119–125. doi: 10.1001/2013.jamapediatrics.107.
    1. Via G, Lichtenstein D, Mojoli F, Rodi G, Neri L, Storti E, Klersy C, Iotti G, Braschi A. Whole lung lavage: a unique model for ultrasound assessment of lung aeration changes. Intensive Care Med. 2010;4:999–1007. doi: 10.1007/s00134-010-1834-4.
    1. Volpicelli G, El Barbary M, Blaivas M, Lichtenstein D, Mathis G, Kirkpatrick AW, Melniker L, Gargani L, Noble VE, Via G, Dean A, Tsung JW, Soldati G, Copetti R, Bouhemad B, Reissig A, Agricola E, Rouby JJ, Arbelot C, Liteplo A, Sargsyan A, Silva F, Hoppmann R, Breitkreutz R, Seibel A, Neri L, Storti E, Petrovic T. International evidence-based recommendations for point-of-care lung ultrasound. Intensive Care Med. 2012;4:577–591. doi: 10.1007/s00134-012-2513-4.
    1. van der Werf TS, Zijlstra JG. Ultrasound of the lung: just imagine. Intensive Care Med. 2004;4:183–184. doi: 10.1007/s00134-003-2083-6.

Source: PubMed

3
Prenumerera