CXCR4-targeted theranostics in oncology

Andreas K Buck, Sebastian E Serfling, Thomas Lindner, Heribert Hänscheid, Andreas Schirbel, Stefanie Hahner, Martin Fassnacht, Hermann Einsele, Rudolf A Werner, Andreas K Buck, Sebastian E Serfling, Thomas Lindner, Heribert Hänscheid, Andreas Schirbel, Stefanie Hahner, Martin Fassnacht, Hermann Einsele, Rudolf A Werner

Abstract

A growing body of literature reports on the upregulation of C-X-C motif chemokine receptor 4 (CXCR4) in a variety of cancer entities, rendering this receptor as suitable target for molecular imaging and endoradiotherapy in a theranostic setting. For instance, the CXCR4-targeting positron emission tomography (PET) agent [68 Ga]PentixaFor has been proven useful for a comprehensive assessment of the current status quo of solid tumors, including adrenocortical carcinoma or small-cell lung cancer. In addition, [68 Ga]PentixaFor has also provided an excellent readout for hematological malignancies, such as multiple myeloma, marginal zone lymphoma, or mantle cell lymphoma. PET-based quantification of the CXCR4 capacities in vivo allows for selecting candidates that would be suitable for treatment using the theranostic equivalent [177Lu]/[90Y]PentixaTher. This CXCR4-directed theranostic concept has been used as a conditioning regimen prior to hematopoietic stem cell transplantation and to achieve sufficient anti-lymphoma/-tumor activity in particular for malignant tissues that are highly sensitive to radiation, such as the hematological system. Increasing the safety margin, pretherapeutic dosimetry is routinely performed to determine the optimal activity to enhance therapeutic efficacy and to reduce off-target adverse events. The present review will provide an overview of current applications for CXCR4-directed molecular imaging and will introduce the CXCR4-targeted theranostic concept for advanced hematological malignancies.

Keywords: Adrenocortical carcinoma; C-X-C motif chemokine receptor 4; CXCR4; Endoradiotherapy; Multiple myeloma; Theranostics; [177Lu]PentixaTher; [68Ga]PentixaFor; [90Y]PentixaTher.

Conflict of interest statement

The authors declare no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Chemical structures of [68Ga]PentixaFor, [90Y], and [.177Lu]PentixaTher
Fig. 2
Fig. 2
Patient after resection of adrenocortical carcinoma imaged with [68 Ga]PentixaFor. The right-sided primary was resected earlier. Maximum intensity projection in A revealed multiple sites of disease after administration of [68Ga]PentixaFor. Transaxial CT (B), PET (C), and PET/CT (D) demonstrated intense uptake in a retroperitoneal lesion. Further CXCR4 positive sites of disease included liver lesions (E and G). Additional discernible uptake in the left adrenal gland (F)
Fig. 3
Fig. 3
Patient with marginal zone lymphoma after injection of [68 Ga]PentixaFor. Multiple disease sites are visualized on maximum intensity projection in A. Transaxial CT (B), PET (C), and PET/CT (D) revealed intense lymph node manifestations in the thorax. PET/CT also showed radiotracer accumulation in the cervical (E), abdominal (F), and in the inguinal region (G). Modified from Duell et al., Journal of Nuclear Medicine, October 2021, 62 (10) 1415–1421 [11]. © by the Society of Nuclear Medicine and Molecular Imaging, Inc
Fig. 4
Fig. 4
Bar chart showing A average SUVmax and B target-to-background ratio (TBR). For A, black dotted lines indicate SUVmax cutoffs of 6 and 12, and for B, those lines show TBR cutoffs of 4 and 8, respectively. BP blood pool (red dotted line), AML acute myeloid leukemia, CCC cholangiocarcinoma, NSCLC non-small-cell lung carcinoma, NEN neuroendocrine neoplasm, DSRCT Desmoplastic Small Round Cell Tumor, ALL acute lymphoblastoid leukemia, CLL chronic lymphocytic leukemia, MZL marginal zone lymphoma, SCLC small-cell lung carcinoma, MM multiple myeloma. Adrenocortical adenoma: aldosteron-producing adrenocortical adenoma. Modified from Buck et al., Journal of Nuclear Medicine, 2022 Mar 3; jnumed.121.263693 [43]. © by the Society of Nuclear Medicine and Molecular Imaging, Inc
Fig. 5
Fig. 5
Example of activity time functions in a patient with multiple myeloma. Activity retention measurements as well as fit functions are shown for the whole body (black), per liter of whole blood (grey), red bone marrow (red), liver (green), kidneys (purple), and spleen (blue). Modified from Hänscheid et al., Journal of Nuclear Medicine 2021 Aug 19; jnumed.121.262295, https://doi.org/10.2967/jnumed.121.262295 [46]. © by the Society of Nuclear Medicine and Molecular Imaging, Inc
Fig. 6
Fig. 6
Partial response in a patient affected with diffuse large B cell lymphoma treated with CXCR4-targeted endoradiotherapy and additional radioimmunotherapy. Pretherapeutic [68Ga]PentixaFor (left) and posttherapeutic [18F]FDG PET/CT (right) after tandem treatment using [90Y]PentixaTher and [90Y]Ibritumomab-Tiuxetan (Zevalin). Posttherapy scans demonstrated reduction of lesions in the kidneys, adrenals (arrows), lung, and nodal disease manifestations. Note that diffuse radiotracer accumulation in the lung on [18F]FDG maximum intensity projection on the right was due to pneumonia. Modified from Lapa et al., Journal of Nuclear Medicine Jan 2019, 60 (1) 60–64 [15], © by the Society of Nuclear Medicine and Molecular Imaging, Inc
Fig. 7
Fig. 7
A Reduction of blood values relative to baseline after CXCR4-directed endoradiotherapy. B Time interval between CXCR4-directed endoradiotherapy and start of conventional conditioning therapy. Desired cytopenia was achieved for both [90Y]PentixaTher and [177Lu]PentixaTher (A). For [90Y]PentixaTher, however, the time interval until start of conditioning therapy was significantly shorter, which can be explained by the longer half-life of 2.7 days (177Lu, 6.7 days) (B). Modified from Maurer et al., 2019 Oct; 60(10): 1399–1405 [23], © by the Society of Nuclear Medicine and Molecular Imaging, Inc

References

    1. Chatterjee S, Behnam Azad B, Nimmagadda S. The intricate role of CXCR4 in cancer. Adv Cancer Res. 2014;124:31–82. doi: 10.1016/B978-0-12-411638-2.00002-1.
    1. Demmer O, Gourni E, Schumacher U, Kessler H, Wester HJ. PET imaging of CXCR4 receptors in cancer by a new optimized ligand. ChemMedChem. 2011;6:1789–1791. doi: 10.1002/cmdc.201100320.
    1. Herrmann K, Lapa C, Wester HJ, Schottelius M, Schiepers C, Eberlein U, et al. Biodistribution and radiation dosimetry for the chemokine receptor CXCR4-targeting probe 68Ga-pentixafor. J Nucl Med. 2015;56:410–416. doi: 10.2967/jnumed.114.151647.
    1. Hartimath SV, Domanska UM, Walenkamp AM, Rudi AJOD, de Vries EF. [(9)(9)mTc]O(2)-AMD3100 as a SPECT tracer for CXCR4 receptor imaging. Nucl Med Biol. 2013;40:507–517. doi: 10.1016/j.nucmedbio.2013.02.003.
    1. Nimmagadda S, Pullambhatla M, Pomper MG. Immunoimaging of CXCR4 expression in brain tumor xenografts using SPECT/CT. J Nucl Med. 2009;50:1124–1130. doi: 10.2967/jnumed.108.061325.
    1. Woodard LE, Nimmagadda S. CXCR4-based imaging agents. J Nucl Med. 2011;52:1665–1669. doi: 10.2967/jnumed.111.097733.
    1. Lapa C, Schreder M, Schirbel A, Samnick S, Kortum KM, Herrmann K, et al. [(68)Ga]Pentixafor-PET/CT for imaging of chemokine receptor CXCR4 expression in multiple myeloma — comparison to [(18)F]FDG and laboratory values. Theranostics. 2017;7:205–212. doi: 10.7150/thno.16576.
    1. Werner RA, Kircher S, Higuchi T, Kircher M, Schirbel A, Wester HJ, et al. CXCR4-directed imaging in solid tumors. Front Oncol. 2019;9:770. doi: 10.3389/fonc.2019.00770.
    1. Vag T, Gerngross C, Herhaus P, Eiber M, Philipp-Abbrederis K, Graner FP, et al. First experience with chemokine receptor CXCR4-targeted PET imaging of patients with solid cancers. J Nucl Med. 2016;57:741–746. doi: 10.2967/jnumed.115.161034.
    1. Mayerhoefer ME, Raderer M, Lamm W, Weber M, Kiesewetter B, Rohrbeck J, et al. CXCR4 PET/MRI for follow-up of gastric mucosa-associated lymphoid tissue lymphoma after first-line Helicobacter pylori eradication. Blood. 2022;139:240–244. doi: 10.1182/blood.2021013239.
    1. Duell J, Krummenast F, Schirbel A, Klassen P, Samnick S, Rauert-Wunderlich H, et al. Improved primary staging of marginal-zone lymphoma by addition of CXCR4-directed PET/CT. J Nucl Med. 2021;62:1415–1421. doi: 10.2967/jnumed.120.257279.
    1. Habringer S, Lapa C, Herhaus P, Schottelius M, Istvanffy R, Steiger K, et al. Dual targeting of acute leukemia and supporting niche by CXCR4-directed theranostics. Theranostics. 2018;8:369–383. doi: 10.7150/thno.21397.
    1. Walenkamp AME, Lapa C, Herrmann K, Wester HJ. CXCR4 ligands: the next big hit? J Nucl Med. 2017;58:77S–82S. doi: 10.2967/jnumed.116.186874.
    1. Buck AK, Stolzenburg A, Hanscheid H, Schirbel A, Luckerath K, Schottelius M, et al. Chemokine receptor — directed imaging and therapy. Methods. 2017;130:63–71. doi: 10.1016/j.ymeth.2017.09.002.
    1. Lapa C, Hanscheid H, Kircher M, Schirbel A, Wunderlich G, Werner RA, et al. Feasibility of CXCR4-directed radioligand therapy in advanced diffuse large B-cell lymphoma. J Nucl Med. 2019;60:60–64. doi: 10.2967/jnumed.118.210997.
    1. Sartor O, de Bono J, Chi KN, Fizazi K, Herrmann K, Rahbar K, et al. Lutetium-177-PSMA-617 for metastatic castration-resistant prostate cancer. N Engl J Med. 2021;385:1091–1103. doi: 10.1056/NEJMoa2107322.
    1. Strosberg J, El-Haddad G, Wolin E, Hendifar A, Yao J, Chasen B, et al. Phase 3 trial of (177)Lu-dotatate for midgut neuroendocrine tumors. N Engl J Med. 2017;376:125–135. doi: 10.1056/NEJMoa1607427.
    1. Kaemmerer D, Trager T, Hoffmeister M, Sipos B, Hommann M, Sanger J, et al. Inverse expression of somatostatin and CXCR4 chemokine receptors in gastroenteropancreatic neuroendocrine neoplasms of different malignancy. Oncotarget. 2015;6:27566–27579. doi: 10.18632/oncotarget.4491.
    1. Werner RA, Weich A, Higuchi T, Schmid JS, Schirbel A, Lassmann M, et al. Imaging of chemokine receptor 4 expression in neuroendocrine tumors — a triple tracer comparative approach. Theranostics. 2017;7:1489–1498. doi: 10.7150/thno.18754.
    1. Panagiotidis E, Alshammari A, Michopoulou S, Skoura E, Naik K, Maragkoudakis E, et al. Comparison of the impact of 68Ga-DOTATATE and 18F-FDG PET/CT on clinical management in patients with neuroendocrine tumors. J Nucl Med. 2017;58:91–96. doi: 10.2967/jnumed.116.178095.
    1. Hayes AR, Furtado O’Mahony L, Quigley AM, Gnanasegaran G, Caplin ME, Navalkissoor S, et al. The combined interpretation of 68Ga-DOTATATE PET/CT and 18F-FDG PET/CT in metastatic gastroenteropancreatic neuroendocrine tumors: a classification system with prognostic impact. Clin Nucl Med. 2022;47:26–35. doi: 10.1097/RLU.0000000000003937.
    1. Weich A, Werner RA, Buck AK, Hartrampf PE, Serfling SE, Scheurlen M, et al. CXCR4-directed PET/CT in patients with newly diagnosed neuroendocrine carcinomas. Diagnostics (Basel). 2021;11. 10.3390/diagnostics11040605.
    1. Maurer S, Herhaus P, Lippenmeyer R, Hanscheid H, Kircher M, Schirbel A, et al. Side effects of CXC-chemokine receptor 4-directed endoradiotherapy with pentixather before hematopoietic stem cell transplantation. J Nucl Med. 2019;60:1399–1405. doi: 10.2967/jnumed.118.223420.
    1. Burger M, Glodek A, Hartmann T, Schmitt-Graff A, Silberstein LE, Fujii N, et al. Functional expression of CXCR4 (CD184) on small-cell lung cancer cells mediates migration, integrin activation, and adhesion to stromal cells. Oncogene. 2003;22:8093–8101. doi: 10.1038/sj.onc.1207097.
    1. Lapa C, Luckerath K, Rudelius M, Schmid JS, Schoene A, Schirbel A, et al. [68Ga]Pentixafor-PET/CT for imaging of chemokine receptor 4 expression in small cell lung cancer—initial experience. Oncotarget. 2016;7:9288–9295. doi: 10.18632/oncotarget.7063.
    1. Chifu I, Heinze B, Fuss CT, Lang K, Kroiss M, Kircher S, et al. Impact of the chemokine receptors CXCR4 and CXCR7 on clinical outcome in adrenocortical carcinoma. Front Endocrinol (Lausanne) 2020;11:597878. doi: 10.3389/fendo.2020.597878.
    1. Altieri B, Ronchi CL, Kroiss M, Fassnacht M. Next-generation therapies for adrenocortical carcinoma. Best Pract Res Clin Endocrinol Metab. 2020;34:101434. doi: 10.1016/j.beem.2020.101434.
    1. Fassnacht M, Dekkers OM, Else T, Baudin E, Berruti A, de Krijger R, et al. European Society of Endocrinology Clinical Practice Guidelines on the management of adrenocortical carcinoma in adults, in collaboration with the European Network for the Study of Adrenal Tumors. Eur J Endocrinol. 2018;179:G1–G46. doi: 10.1530/EJE-18-0608.
    1. Bluemel C, Hahner S, Heinze B, Fassnacht M, Kroiss M, Bley TA, et al. Investigating the chemokine receptor 4 as potential theranostic target in adrenocortical cancer patients. Clin Nucl Med. 2017;42:e29–e34. doi: 10.1097/RLU.0000000000001435.
    1. Li T, Li H, Wang Y, Harvard C, Tan JL, Au A, et al. The expression of CXCR4, CXCL12 and CXCR7 in malignant pleural mesothelioma. J Pathol. 2011;223:519–530. doi: 10.1002/path.2829.
    1. Lapa C, Kircher S, Schirbel A, Rosenwald A, Kropf S, Pelzer T, et al. Targeting CXCR4 with [(68)Ga]Pentixafor: a suitable theranostic approach in pleural mesothelioma? Oncotarget. 2017;8:96732–96737. doi: 10.18632/oncotarget.18235.
    1. Lewis R, Habringer S, Kircher M, Hefter M, Peuker CA, Werner R, et al. Investigation of spleen CXCR4 expression by [(68)Ga]Pentixafor PET in a cohort of 145 solid cancer patients. EJNMMI Res. 2021;11:77. doi: 10.1186/s13550-021-00822-6.
    1. Serfling SE, Lapa C, Dreher N, Hartrampf PE, Rowe SP, Higuchi T, et al. Impact of tumor burden on normal organ distribution in patients imaged with CXCR4-targeted [68Ga]Ga-PentixaFor PET/CT. Mol Imaging Biol. 2022.
    1. Beauregard JM, Hofman MS, Kong G, Hicks RJ. The tumour sink effect on the biodistribution of 68Ga-DOTA-octreotate: implications for peptide receptor radionuclide therapy. Eur J Nucl Med Mol Imaging. 2012;39:50–56. doi: 10.1007/s00259-011-1937-3.
    1. Sandstrom M, Velikyan I, Garske-Roman U, Sorensen J, Eriksson B, Granberg D, et al. Comparative biodistribution and radiation dosimetry of 68Ga-DOTATOC and 68Ga-DOTATATE in patients with neuroendocrine tumors. J Nucl Med. 2013;54:1755–1759. doi: 10.2967/jnumed.113.120600.
    1. Philipp-Abbrederis K, Herrmann K, Knop S, Schottelius M, Eiber M, Luckerath K, et al. In vivo molecular imaging of chemokine receptor CXCR4 expression in patients with advanced multiple myeloma. EMBO Mol Med. 2015;7:477–487. doi: 10.15252/emmm.201404698.
    1. Pan Q, Cao X, Luo Y, Li J, Feng J, Li F. Chemokine receptor-4 targeted PET/CT with (68)Ga-Pentixafor in assessment of newly diagnosed multiple myeloma: comparison to (18)F-FDG PET/CT. Eur J Nucl Med Mol Imaging. 2020;47:537–546. doi: 10.1007/s00259-019-04605-z.
    1. Herhaus P, Habringer S, Philipp-Abbrederis K, Vag T, Gerngross C, Schottelius M, et al. Targeted positron emission tomography imaging of CXCR4 expression in patients with acute myeloid leukemia. Haematologica. 2016;101:932–940. doi: 10.3324/haematol.2016.142976.
    1. Deutsch AJ, Steinbauer E, Hofmann NA, Strunk D, Gerlza T, Beham-Schmid C, et al. Chemokine receptors in gastric MALT lymphoma: loss of CXCR4 and upregulation of CXCR7 is associated with progression to diffuse large B-cell lymphoma. Mod Pathol. 2013;26:182–194. doi: 10.1038/modpathol.2012.134.
    1. Mayerhoefer ME, Raderer M, Lamm W, Pichler V, Pfaff S, Weber M, et al. CXCR4 PET imaging of mantle cell lymphoma using [(68)Ga]Pentixafor: comparison with [(18)F]FDG-PET. Theranostics. 2021;11:567–578. doi: 10.7150/thno.48620.
    1. Kraus S, Dierks A, Rasche L, Kertels O, Kircher M, Schirbel A, et al. (68)Ga-Pentixafor PET/CT for detection of chemokine receptor CXCR4 expression in myeloproliferative neoplasms. J Nucl Med. 2022;63:96–99. doi: 10.2967/jnumed.121.262206.
    1. Luo Y, Cao X, Pan Q, Li J, Feng J, Li F. (68)Ga-Pentixafor PET/CT for imaging of chemokine receptor 4 expression in Waldenstrom macroglobulinemia/lymphoplasmacytic lymphoma: comparison to (18)F-FDG PET/CT. J Nucl Med. 2019;60:1724–1729. doi: 10.2967/jnumed.119.226134.
    1. Buck AK, Haug A, Dreher N, Lambertini A, Higuchi T, Lapa C, et al. Imaging of C-X-C motif chemokine receptor 4 expression in 690 patients with solid or hematologic neoplasms using (68)Ga-PentixaFor PET. J Nucl Med. 2022 doi: 10.2967/jnumed.121.263693.
    1. Keller T, Lopez-Picon FR, Krzyczmonik A, Forsback S, Takkinen JS, Rajander J, et al. Comparison of high and low molar activity TSPO tracer [(18)F]F-DPA in a mouse model of Alzheimer’s disease. J Cereb Blood Flow Metab. 2020;40:1012–1020. doi: 10.1177/0271678X19853117.
    1. Schottelius M, Osl T, Poschenrieder A, Hoffmann F, Beykan S, Hanscheid H, et al. [(177)Lu]pentixather: comprehensive preclinical characterization of a first CXCR4-directed endoradiotherapeutic agent. Theranostics. 2017;7:2350–2362. doi: 10.7150/thno.19119.
    1. Hanscheid H, Schirbel A, Hartrampf P, Kraus S, Werner RA, Einsele H, et al. Biokinetics and dosimetry of [(177)Lu]Lu-Pentixather. J Nucl Med. 2021 doi: 10.2967/jnumed.121.262295.
    1. Hanscheid H, Lapa C, Buck AK, Lassmann M, Werner RA. Dose mapping after endoradiotherapy with (177)Lu-DOTATATE/DOTATOC by a single measurement after 4 days. J Nucl Med. 2018;59:75–81. doi: 10.2967/jnumed.117.193706.
    1. Herrmann K, Schottelius M, Lapa C, Osl T, Poschenrieder A, Hanscheid H, et al. First-in-human experience of CXCR4-directed endoradiotherapy with 177Lu- and 90Y-labeled pentixather in advanced-stage multiple myeloma with extensive intra- and extramedullary disease. J Nucl Med. 2016;57:248–251. doi: 10.2967/jnumed.115.167361.
    1. Lapa C, Herrmann K, Schirbel A, Hanscheid H, Luckerath K, Schottelius M, et al. CXCR4-directed endoradiotherapy induces high response rates in extramedullary relapsed multiple myeloma. Theranostics. 2017;7:1589–1597. doi: 10.7150/thno.19050.
    1. Sarno J. Prevention and management of tumor lysis syndrome in adults with malignancy. J Adv Pract Oncol. 2013;4:101–106.
    1. Fassnacht M, Assie G, Baudin E, Eisenhofer G, de la Fouchardiere C, Haak HR, et al. Adrenocortical carcinomas and malignant phaeochromocytomas: ESMO-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2020;31:1476–1490. doi: 10.1016/j.annonc.2020.08.2099.
    1. Werner RA, Schirbel A, Buck AK, Fassnacht M, Hahner S. Adrenal functional imaging. Presse Med. 2022;51:104114. doi: 10.1016/j.lpm.2022.104114.
    1. Cancilla D, Rettig MP, DiPersio JF. Targeting CXCR4 in AML and ALL. Front Oncol. 2020;10:1672. doi: 10.3389/fonc.2020.01672.
    1. Crazzolara R, Kreczy A, Mann G, Heitger A, Eibl G, Fink FM, et al. High expression of the chemokine receptor CXCR4 predicts extramedullary organ infiltration in childhood acute lymphoblastic leukaemia. Br J Haematol. 2001;115:545–553. doi: 10.1046/j.1365-2141.2001.03164.x.
    1. Ko SY, Park CJ, Park SH, Cho YU, Jang S, Seo EJ, et al. High CXCR4 and low VLA-4 expression predicts poor survival in adults with acute lymphoblastic leukemia. Leuk Res. 2014;38:65–70. doi: 10.1016/j.leukres.2013.10.016.
    1. Sison EA, McIntyre E, Magoon D, Brown P. Dynamic chemotherapy-induced upregulation of CXCR4 expression: a mechanism of therapeutic resistance in pediatric AML. Mol Cancer Res. 2013;11:1004–1016. doi: 10.1158/1541-7786.MCR-13-0114.
    1. Heckmann MB, Reinhardt F, Finke D, Katus HA, Haberkorn U, Leuschner F, et al. Relationship between cardiac fibroblast activation protein activity by positron emission tomography and cardiovascular disease. Circ Cardiovasc Imaging. 2020;13:e010628. doi: 10.1161/CIRCIMAGING.120.010628.
    1. Werner RA, Koenig T, Diekmann J, Haghikia A, Derlin T, Thackeray JT, et al. CXCR4-targeted imaging of post-infarct myocardial tissue inflammation: prognostic value after reperfused myocardial infarction. JACC Cardiovasc Imaging. 2022;15:372–374. doi: 10.1016/j.jcmg.2021.08.013.
    1. Hess A, Derlin T, Koenig T, Diekmann J, Wittneben A, Wang Y, et al. Molecular imaging-guided repair after acute myocardial infarction by targeting the chemokine receptor CXCR4. Eur Heart J. 2020;41:3564–3575. doi: 10.1093/eurheartj/ehaa598.
    1. Reiter T, Kircher M, Schirbel A, Werner RA, Kropf S, Ertl G, et al. Imaging of C-X-C motif chemokine receptor CXCR4 expression after myocardial infarction with [(68)Ga]Pentixafor-PET/CT in correlation with cardiac MRI. JACC Cardiovasc Imaging. 2018;11:1541–1543. doi: 10.1016/j.jcmg.2018.01.001.
    1. Werner RA, Thackeray JT, Diekmann J, Weiberg D, Bauersachs J, Bengel FM. The changing face of nuclear cardiology: guiding cardiovascular care toward molecular medicine. J Nucl Med. 2020;61:951–961. doi: 10.2967/jnumed.119.240440.
    1. Calabretta R, Hoeller C, Pichler V, Mitterhauser M, Karanikas G, Haug A, et al. Immune checkpoint inhibitor therapy induces inflammatory activity in large arteries. Circulation. 2020;142:2396–2398. doi: 10.1161/CIRCULATIONAHA.120.048708.
    1. Escudier M, Cautela J, Malissen N, Ancedy Y, Orabona M, Pinto J, et al. Clinical features, management, and outcomes of immune checkpoint inhibitor-related cardiotoxicity. Circulation. 2017;136:2085–2087. doi: 10.1161/CIRCULATIONAHA.117.030571.
    1. Kircher M, Tran-Gia J, Kemmer L, Zhang X, Schirbel A, Werner RA, et al. Imaging inflammation in atherosclerosis with CXCR4-directed (68)Ga-Pentixafor PET/CT: correlation with (18)F-FDG PET/CT. J Nucl Med. 2020;61:751–756. doi: 10.2967/jnumed.119.234484.
    1. Kuhne MR, Mulvey T, Belanger B, Chen S, Pan C, Chong C, et al. BMS-936564/MDX-1338: a fully human anti-CXCR4 antibody induces apoptosis in vitro and shows antitumor activity in vivo in hematologic malignancies. Clin Cancer Res. 2013;19:357–366. doi: 10.1158/1078-0432.CCR-12-2333.

Source: PubMed

3
Prenumerera