The cost-effectiveness of exercise-based cardiac rehabilitation: a systematic review of the characteristics and methodological quality of published literature

Katherine Edwards, Natasha Jones, Julia Newton, Charlie Foster, Andrew Judge, Kate Jackson, Nigel K Arden, Rafael Pinedo-Villanueva, Katherine Edwards, Natasha Jones, Julia Newton, Charlie Foster, Andrew Judge, Kate Jackson, Nigel K Arden, Rafael Pinedo-Villanueva

Abstract

Aim: This descriptive review aimed to assess the characteristics and methodological quality of economic evaluations of cardiac rehabilitation (CR) programs according to updated economic guidelines for healthcare interventions. Recommendations will be made to inform future research addressing the impact of a physical exercise component on cost-effectiveness.

Methods: Electronic databases were searched for economic evaluations of exercise-based CR programs published in English between 2000 and 2014. The Consolidated Health Economic Evaluation Reporting Standards (CHEERS) statement was used to review the methodological quality of included economic evaluations.

Results: Fifteen economic evaluations met the review inclusion criteria. Assessed study characteristics exhibited wide variability, particularly in their economic perspective, time horizon, setting, comparators and included costs, with significant heterogeneity in exercise dose across interventions. Ten evaluations were based on randomised controlled trials (RCTs) spanning 6-24 months but often with weak or inconclusive results; two were modelling studies; and the final three utilised longer time horizons of 3.5-5 years from which findings suggest that long-term exercise-based CR results in lower costs, reduced hospitalisations and a longer cumulative patient lifetime. None of the 15 articles met all the CHEERS quality criteria, with the majority either fully or partially meeting a selection of the assessed variables.

Conclusion: Evidence exists supporting the cost-effectiveness of exercise-based CR for cardiovascular disease patients. However, variability in CR program delivery and weak consistency between study perspective and design limits study comparability and therefore the accumulation of evidence in support of a particular exercise regime. The generalisability of study findings was limited due to the exclusion of patients with comorbidities as would typically be found in a real-world setting. The use of longer time-horizons would be more comparable with a chronic condition and enable economic assessments of the long-term effects of CR. As none of the articles met recent reporting standards for the economic assessment of healthcare interventions, it is recommended that future studies adhere to such guidelines.

Keywords: Cardiac rehabilitation; Cheers; Cost effectiveness; Economic evaluation; Exercise.

Conflict of interest statement

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

Associate Professor Andrew Judge reports personal fees from SERVIER, UK RENAL REGISTRY, OXFORD CRANIOFACIAL UNIT, FRESHFIELDS, BRUCKHAUS DERINGER, ANTHERA PHARMACEUTICALS and other from IDIAP JORDI GOL and ROCHE, outside the submitted work. Professor Nigel K Arden reports personal fees from FLEXION, LILY, MERICK, Q-MED, ROCHE, SMITH & NEPHEW and FRESHFIELDS, outside the submitted work. Dr. Rafael Pinedo-Villanueva reports personal fees from FRESHFIELDS, outside the submitted work. The remaining authors have no conflicts of interest to declare.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Flow of Review Selection Process

References

    1. Nichols M, Townsend N, Luengo-Fernandez R, Leal J, Gray A, Scarborough P, and Rayner M. European Cardiovascular Disease Statistics 2012. European Heart Network, Brussels, European Society of Cardiology, Sophia Antipolis.
    1. Papadakis S, Reid RD, Coyle D, Beaton L, Angus D, Oldridge N. Cost-effectiveness of cardiac rehabilitation program delivery models in patients at varying cardiac risk, reason for referral, and sex. Eur J Cardiovasc Prev Rehabil. 2008;15:347–353. doi: 10.1097/HJR.0b013e3282f5ffab.
    1. Papadakis S, Oldridge N, Coyle D, Mayhew A, Reid RD, Beaton L, Dafoe WA, Angus D. Economic evaluation of cardiac rehabilitation: a systematic review. Eur J Cardiovasc Prev Rehabil. 2005;12:513–520. doi: 10.1097/00149831-200512000-00001.
    1. Oldridge N, Furlong W, Feeny D, Torrance G, Guyatt G, Crowe J, Jones N. Economic evaluation of cardiac rehabilitation soon after acute myocardial infarction. Am J Cardiol. 1993;72:154–161. doi: 10.1016/0002-9149(93)90152-3.
    1. Wong WP, Feng J, Pwee KH, Lim JA. systematic review of economic evaluations of cardiac rehabilitation. BMC Health Serv Res. 2012;12:243. doi: 10.1186/1472-6963-12-243.
    1. Balady GJ, Williams MA, Ades PA, Bittner V, Comoss P, Foody JM, Franklin B, Sanderson B, Southard D. Core Components of Cardiac Rehabilitation/Secondary Prevention Programs: 2007 Update: A Scientific Statement From the American Heart Association Exercise, Cardiac Rehabilitation, and Prevention Committee, the Council on Clinical Cardiology; the Councils on Cardiovascular Nursing, Epidemiology and Prevention, and Nutrition, Physical Activity, and Metabolism; and the American Association of Cardiovascular and Pulmonary Rehabilitation. Circulation. 2007;115:2675–2682. doi: 10.1161/CIRCULATIONAHA.106.180945.
    1. NICE. Secondary prevention in primary and secondary care for patients following a myocardial infarction. National Institute for Health and Care Excellence. 2003. .
    1. Husereau D, Drummond M, Petrou S, Carswell C, Moher D, Greenberg D, Augustovski F, Briggs AH, Mauskopf J, Loder E. Consolidated Health Economic Evaluation Reporting Standards (CHEERS)--explanation and elaboration: a report of the ISPOR Health Economic Evaluation Publication Guidelines Good Reporting Practices Task Force. Value Health. 2003;16:231–250. doi: 10.1016/j.jval.2013.02.002.
    1. Southard BH, Southard DR, Nuckolls J. Clinical trial of an Internet-based case management system for secondary prevention of heart disease. J Cardpulm Rehabil. 2003;23:341–348. doi: 10.1097/00008483-200309000-00003.
    1. Taylor RS, Watt A, Dalal HM, Evans PH, Campbell JL, Read KLQ, Mourant AJ, Wingham J, Thompson DR, Pereira Gray DJ. Home-based cardiac rehabilitation versus hospital-based rehabilitation: a cost effectiveness analysis. Int J Cardiol. 2007;119:196–201. doi: 10.1016/j.ijcard.2006.07.218.
    1. Jolly K, Taylor R, Lip GYH, Greenfield S, Raftery J, Mant J, Lane D, Jones M, Lee KW, Stevens A. The Birmingham Rehabilitation Uptake Maximisation Study (BRUM). Home-based compared with hospital-based cardiac rehabilitation in a multi-ethnic population: cost-effectiveness and patient adherence. Health Technol Assess. 2007;11:1–118. doi: 10.3310/hta11350.
    1. Briffa TG, Eckermann SD, Griffiths AD, Harris PJ, Heath MR, Freedman SB, Donaldson LT, Briffa NK, Keech AC. Cost-effectiveness of rehabilitation after an acute coronary event: a randomised controlled trial. MJA. 2005;183:450–455.
    1. Levin L, Perk AJ, Hedback B. Cardiac rehabilitation--a cost analysis. J Intern Med. 1991;230:427–434. doi: 10.1111/j.1365-2796.1991.tb00468.x.
    1. Dendale P, Hansen D, Berger J, Lamotte M. Long-term cost-benefit ratio of cardiac rehabilitation after percutaneous coronary intervention. Acta Cardiol. 2008;63:451–456. doi: 10.2143/AC.63.4.2033043.
    1. Hall JP, Wiseman VL, King MT, Ross DL, Kovoor P, Zecchin RP, Moir FM, Robert Denniss A. Economic evaluation of a randomised trial of early return to normal activities versus cardiac rehabilitation after acute myocardial infarction. Heart Lung Circ. 2002;11:10–18. doi: 10.1046/j.1444-2892.2002.00105.x.
    1. Ades PA, Pashkow FJ, Nestor JR. Cost-effectiveness of cardiac rehabilitation after myocardial infarction. J Cardpulm Rehabil. 1997;17:222–231. doi: 10.1097/00008483-199707000-00002.
    1. Reid RD, Dafoe WA, Morrin L, Mayhew A, Papadakis S, Beaton L, Oldridge NB, Coyle D, Wells GA. Impact of program duration and contact frequency on efficacy and cost of cardiac rehabilitation: results of a randomized trial. Am Heart J. 2005;149:862–868. doi: 10.1016/j.ahj.2004.09.029.
    1. Carlson JJ, Johnson JA, Franklin BA, VanderLaan RL. Program participation, exercise adherence, cardiovascular outcomes, and program cost of traditional versus modified cardiac rehabilitation. Am J Cardiol. 2000;86:17–23. doi: 10.1016/S0002-9149(00)00822-5.
    1. CM Y, Lau CP, Chau J, McGhee S, Kong SL, Cheung BM, Li LSA. short course of cardiac rehabilitation program is highly cost effective in improving long-term quality of life in patients with recent myocardial infarction or percutaneous coronary intervention. Arch Phys Med Rehabil. 2004;85:1915–1922. doi: 10.1016/j.apmr.2004.05.010.
    1. Spronk S, Bosch JL, Ryjewski C, Rosenblum J, Kaandorp GC, White JV, Hunink MG. Cost-effectiveness of new cardiac and vascular rehabilitation strategies for patients with coronary artery disease. PLoS One. 2008;3:e3883. doi: 10.1371/journal.pone.0003883.
    1. Huang Y, Zhang R, Culler SD, Kutner NG. Costs and effectiveness of cardiac rehabilitation for dialysis patients following coronary bypass. Kidney Int. 2008;74:1079–1084. doi: 10.1038/ki.2008.381.
    1. Oldridge N, Guyatt G, Jones N, Crowe J, Singer J, Feeny D, McKelvie R, Runions J, Streiner D, Torrance G. Effects on quality of life with comprehensive rehabilitation after acute myocardial infarction. Am J Cardiol. 1991;67:1084–1089. doi: 10.1016/0002-9149(91)90870-Q.
    1. Hedback B, Perk J. 5-year results of a comprehensive rehabilitation programme after myocardial infarction. Eur Heart J. 1987;8:234–242. doi: 10.1093/oxfordjournals.eurheartj.a062265.
    1. Dalal HM, Evans PH, Campbell JL, Taylor RS, Watt A, Read KLQ, Mourant AJ, Wingham J, Thompson DR, Pereira Gray DJ. Home-based versus hospital-based rehabilitation after myocardial infarction: A randomized trial with preference arms — Cornwall Heart Attack Rehabilitation Management Study (CHARMS) Int J Cardiol. 2007;119:202–211. doi: 10.1016/j.ijcard.2006.11.018.
    1. BHF. National Audit of Cardiac Rehabilitation: Annual Statistical Report 2014. British Heart Foundation, London. 2014.
    1. Jette M, Sidney K, Blumchen G. Metabolic equivalents (METS) in exercise testing, exercise prescription, and evaluation of functional capacity. Clin Cardiol. 1990;13:555–565. doi: 10.1002/clc.4960130809.
    1. Ainsworth BE, Haskell WL, Whitt MC, Irwin ML, Swartz AM, Strath SJ, O'Brien WL, Bassett DR Jr, Schmitz KH, Emplaincourt PO, Jacobs DR Jr, and Leon AS. Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc 2000, 32: S498-S504.
    1. Gates LS, Leyland KM, Sheard S, Jackson K, Kelly P, Callahan LF, Pate R, Roos EM, Ainsworth B, Cooper C, Foster C, Newton JL, Batt ME, Arden NK. Physical Activity and Osteoarthritis: A consensus study to harmonise self-reporting methods of physical activity across international cohorts. Rheumatol Int. 2017;37(4):469–478. doi: 10.1007/s00296-017-3672-y.
    1. Berger ML, Dreyer N, Anderson F, Towse A, Sedrakyan A, Normand SL. Prospective observational studies to assess comparative effectiveness: the ISPOR good research practices task force report. Value Health. 2012;15:217–230. doi: 10.1016/j.jval.2011.12.010.
    1. Ramsey SD, Willke RJ, Glick H, Reed SD, Augustovski F, Jonsson B, Briggs A, Sullivan SD. Cost-effectiveness analysis alongside clinical trials II-An ISPOR Good Research Practices Task Force report. Value Health. 2015;18:161–172. doi: 10.1016/j.jval.2015.02.001.
    1. Caro JJ, Briggs AH, Siebert U, Kuntz KM. Modeling Good Research Practices - Overview: A Report of the ISPOR-SMDM Modeling Good Research Practices Task Force-1. Value Health. 2012;15:796–803. doi: 10.1016/j.jval.2012.06.012.

Source: PubMed

3
Prenumerera