Automated image analysis of NSCLC biopsies to predict response to anti-PD-L1 therapy

Sonja Althammer, Tze Heng Tan, Andreas Spitzmüller, Lorenz Rognoni, Tobias Wiestler, Thomas Herz, Moritz Widmaier, Marlon C Rebelatto, Helene Kaplon, Diane Damotte, Marco Alifano, Scott A Hammond, Marie-Caroline Dieu-Nosjean, Koustubh Ranade, Guenter Schmidt, Brandon W Higgs, Keith E Steele, Sonja Althammer, Tze Heng Tan, Andreas Spitzmüller, Lorenz Rognoni, Tobias Wiestler, Thomas Herz, Moritz Widmaier, Marlon C Rebelatto, Helene Kaplon, Diane Damotte, Marco Alifano, Scott A Hammond, Marie-Caroline Dieu-Nosjean, Koustubh Ranade, Guenter Schmidt, Brandon W Higgs, Keith E Steele

Abstract

Background: Immune checkpoint therapies (ICTs) targeting the programmed cell death-1 (PD1)/programmed cell death ligand-1 (PD-L1) pathway have improved outcomes for patients with non-small cell lung cancer (NSCLC), particularly those with high PD-L1 expression. However, the predictive value of manual PD-L1 scoring is imperfect and alternative measures are needed. We report an automated image analysis solution to determine the predictive and prognostic values of the product of PD-L1+ cell and CD8+ tumor infiltrating lymphocyte (TIL) densities (CD8xPD-L1 signature) in baseline tumor biopsies.

Methods: Archival or fresh tumor biopsies were analyzed for PD-L1 and CD8 expression by immunohistochemistry. Samples were collected from 163 patients in Study 1108/NCT01693562, a Phase 1/2 trial to evaluate durvalumab across multiple tumor types, including NSCLC, and a separate cohort of 199 non-ICT- patients. Digital images were automatically scored for PD-L1+ and CD8+ cell densities using customized algorithms applied with Developer XD™ 2.7 software.

Results: For patients who received durvalumab, median overall survival (OS) was 21.0 months for CD8xPD-L1 signature-positive patients and 7.8 months for signature-negative patients (p = 0.00002). The CD8xPD-L1 signature provided greater stratification of OS than high densities of CD8+ cells, high densities of PD-L1+ cells, or manually assessed tumor cell PD-L1 expression ≥25%. The CD8xPD-L1 signature did not stratify OS in non-ICT patients, although a high density of CD8+ cells was associated with higher median OS (high: 67 months; low: 39.5 months, p = 0.0009) in this group.

Conclusions: An automated CD8xPD-L1 signature may help to identify NSCLC patients with improved response to durvalumab therapy. Our data also support the prognostic value of CD8+ TILS in NSCLC patients who do not receive ICT.

Trial registration: ClinicalTrials.gov identifier: NCT01693562 . Study code: CD-ON-MEDI4736-1108. Interventional study (ongoing but not currently recruiting). Actual study start date: August 29, 2012. Primary completion date: June 23, 2017 (final data collection date for primary outcome measure).

Keywords: Biomarker; CD8; Cancer immune checkpoint therapy; Image analysis; Immunohistochemistry; NSCLC; PD-L1.

Conflict of interest statement

Ethics approval and consent to participate

Clinical study NCT01693562, from which data in this report were obtained, was carried out in accordance with the Declaration of Helsinki and Good Clinical Practice guidelines. The study protocol, amendments, and participant informed consent document were approved by the appropriate institutional review boards.

Consent for publication

No individual data were used in this study.

Competing interests

SAH, MCR, KR, BWH, and KES are employees of AstraZeneca and own stock and/or stock options in AstraZeneca. THT, AS, LR, TW, TH, MW, and GS are employees of Definiens AG. SA at the time of this study was an employee of Definiens AG.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Digital image analysis segmentation of CD8+ and programmed cell death ligand-1 (PD-L1) + cells in single immunohistochemistry labelled sections of non-small cell lung cancer. Serial tumor sections of durvalumab-treated patients enrolled in Study 1108 were labelled separately using brown chromogen for both CD8 (a) and PD-L1 (b). Image analysis segmentations of cells expressing each marker (c and d) are shown as red and quantifications of the corresponding expression levels are performed separately
Fig. 2
Fig. 2
Predictive value of the CD8xPD-L1 signature compared to individual components. The comparative values are demonstrated by Kaplan-Meier analysis for overall survival of the durvalumab-treated patient test set for CD8xPD-L1 signature (a), CD8+ cell density (b), programmed cell death ligand-1 (PD-L1) + cell density (c), and manual pathologist scoring of PD-L1 tumor cell expression (d). Kaplan-Meier curves show survival probability, with shaded areas representing 95% confidence intervals. The cutoff values by which each measure was determined positive or negative were 1.54 × 105 cells2/mm4 for CD8xPD-L1 signature positivity; 297 cells/mm2 for CD8+ tumor infiltrating lymphocyte density; and 644 cells/mm2 for PD-L1+ cell density. The cutoff value for PD-L1 manual scoring, ≥25% tumor cells, was determined previously [39]
Fig. 3
Fig. 3
Predictive versus prognostic values of the CD8xPD-L1 signature. These are demonstrated by Kaplan-Meier analysis of overall survival for the CD8xPD-L1 signature in the combined (training and test) set of patients treated with durvalumab (a) compared to the set of non-immune checkpoint therapy (ICT) patients (b). Kaplan-Meier curves show survival probability, with shaded areas representing 95% confidence intervals. The prevalence for the non-ICT patients was matched to that for patients treated with durvalumab. The resulting cutoffs for CD8xPD-L1 signature positivity for the durvalumab and non-ICT sets respectively were 1.54 × 105 and 2.85 × 104 cells2/mm4
Fig. 4
Fig. 4
The prognostic values of CD8+ tumor infiltrating lymphocyte (TIL) densities and programmed cell death ligand-1 (PD-L1) measures. These are demonstrated by Kaplan-Meier analysis for overall survival by CD8+ (a) and PD-L1+ (b) cell densities and manual pathologist scoring of PD-L1 tumor cell expression (c) in patients who did not receive immune checkpoint therapy. Kaplan-Meier curves show survival probability, with shaded areas representing 95% confidence intervals. The cutoff values by which each measure was determined positive or negative were 297 cells/mm2 for CD8+ TIL density and 644 cells/mm2 for PD-L1+ cell density. The cutoff value for PD-L1 manual scoring, ≥25% tumor cells, was determined previously [39]

References

    1. Ilcus C, Bagacean C, Tempescul A, Popescu C, Parvu A, Cenariu M, et al. Immune checkpoint blockade: the role of PD1-PD-L axis in lymphoid malignancies. OncoTargets Ther. 2017;10:2349. doi: 10.2147/OTT.S133385.
    1. Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science. 2018;359(6382):1350–1355. doi: 10.1126/science.aar4060.
    1. Brahmer JR, Pardoll DM. Immune checkpoint inhibitors: making immunotherapy a reality for the treatment of lung cancer. Cancer Immunol Res. 2013;1:85–91. doi: 10.1158/2326-6066.CIR-13-0078.
    1. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, et al. Nivolumab versus docetaxel in advanced nonsquamous non–small-cell lung cancer. N Engl J Med. 2015;373:1627–1639. doi: 10.1056/NEJMoa1507643.
    1. Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, et al. Pembrolizumab versus chemotherapy for PD-L1–positive non–small-cell lung cancer. N Engl J Med. 2016;375:1823–1833. doi: 10.1056/NEJMoa1606774.
    1. Fehrenbacher L, Spira A, Ballinger M, Kowanetz M, Vansteenkiste J, Mazieres J, et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet. 2016;387:1837–1846. doi: 10.1016/S0140-6736(16)00587-0.
    1. Antonia Scott J., Villegas Augusto, Daniel Davey, Vicente David, Murakami Shuji, Hui Rina, Kurata Takayasu, Chiappori Alberto, Lee Ki H., de Wit Maike, Cho Byoung C., Bourhaba Maryam, Quantin Xavier, Tokito Takaaki, Mekhail Tarek, Planchard David, Kim Young-Chul, Karapetis Christos S., Hiret Sandrine, Ostoros Gyula, Kubota Kaoru, Gray Jhanelle E., Paz-Ares Luis, de Castro Carpeño Javier, Faivre-Finn Corinne, Reck Martin, Vansteenkiste Johan, Spigel David R., Wadsworth Catherine, Melillo Giovanni, Taboada Maria, Dennis Phillip A., Özgüroğlu Mustafa. Overall Survival with Durvalumab after Chemoradiotherapy in Stage III NSCLC. New England Journal of Medicine. 2018;379(24):2342–2350. doi: 10.1056/NEJMoa1809697.
    1. Lisberg A, Garon EB. The value of PD-L1 testing in non–small cell lung cancer. JAMA Oncol. 2016;2:571–572. doi: 10.1001/jamaoncol.2016.0043.
    1. Herbst RS, Baas P, Kim DW, Felip E, Pérez-Gracia JL, Han JY, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 2016;387:1540–1550. doi: 10.1016/S0140-6736(15)01281-7.
    1. Antonia SJ, Brahmer JR, Khleif S, Balmanoukian AS, Ou SI, Gutierrez M, et al. Phase 1/2 study of the safety and clinical activity of durvalumab in patients with non-small cell lung cancer (NSCLC) Copenhagen: ESMO; 2016.
    1. Hui R, Garon EB, Goldman JW, Leighl NB, Hellmann MD, Patnaik A, et al. Pembrolizumab as first-line therapy for patients with PD-L1-positive advanced non-small cell lung cancer: a phase 1 trial. Ann Oncol. 2017;28(4):874–881. doi: 10.1093/annonc/mdx008.
    1. Hellmann MD, Rizvi NA, Goldman JW, Gettinger SN, Borghaei H, Brahmer JR, et al. Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): results of an open-label, phase 1, multicohort study. Lancet Oncol. 2017;18(1):31–41. doi: 10.1016/S1470-2045(16)30624-6.
    1. Peters S, Gettinger S, Johnson ML, Jänne PA, Garassino MC, Christoph D, et al. Phase II trial of atezolizumab as first-line or subsequent therapy for patients with programmed death-ligand 1–selected advanced non–small-cell lung cancer (BIRCH) J Clin Oncol. 2017;35:2781–2789. doi: 10.1200/JCO.2016.71.9476.
    1. Ratcliffe MJ, Sharpe A, Midha A, Barker C, Scott M, Scorer P, et al. Agreement between programmed cell death ligand-1 diagnostic assays across multiple protein expression cutoffs in non-small cell lung cancer. Clin Cancer Res. 2017;23:3585–3591. doi: 10.1158/1078-0432.CCR-16-2375.
    1. Diggs LP, Hsueh EC. Utility of PD-L1 immunohistochemistry assays for predicting PD1/PD-L1 inhibitor response. Biomarker Res. 2017;5:12. doi: 10.1186/s40364-017-0093-8.
    1. Stewart R, Morrow M, Hammond SA, Mulgrew K, Marcus D, Poon E, et al. Identification and characterization of MEDI4736, an antagonistic anti–PD-L1 monoclonal antibody. Cancer Immunol Res. 2015;3:1052–1062. doi: 10.1158/2326-6066.CIR-14-0191.
    1. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Mutational landscape determines sensitivity to PD1 blockade in non–small cell lung cancer. Science. 2015;348(6230):124–128. doi: 10.1126/science.aaa1348.
    1. Peters S, Creelan B, Hellmann MD, Socinski MA, Reck M, Bhagavatheeswaran P, et al. Impact of tumor mutation burden on the efficacy of first-line nivolumab in stage IV or recurrent non-small cell lung cancer: an exploratory analysis of CheckMate 026. Cancer Res. 2017;77(13 Suppl):abstract CT082. doi: 10.1158/1538-7445.AM2017-CT082.
    1. Voong KR, Feliciano J, Becker D, Levy B. Beyond PD-L1 testing – emerging biomarkers for immunotherapy in non-small cell lung cancer. Ann Transl Med. 2017;5:376. doi: 10.21037/atm.2017.06.48.
    1. Hellmann MD, Ciuleanu TE, Pluzanski A, Lee JS, Otterson GA, Audigier-Valette C, et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med. 2018;378:2093–2104. doi: 10.1056/NEJMoa1801946.
    1. Hellmann MD, Nathanson T, Rizvi H, Creelan BC, Sanchez-Vega F, Ahuja A, et al. Genomic features of response to combination immunotherapy in patients with advanced non-small-cell lung cancer. Cancer Cell. 2018;33:843–852. doi: 10.1016/j.ccell.2018.03.018.
    1. Forde PM, Chaft JE, Smith KN, Anagnostou V, Cottrell TR, Hellmann MD, et al. Neoadjuvant PD-1 blockade in resectable lung cancer. N Engl J Med. 2018;378:1976–1986. doi: 10.1056/NEJMoa1716078.
    1. Higgs BW, Morehouse C, Streicher KL, Brohawn P, Pilataxi F, Gupta A, et al. Interferon gamma messenger RNA signature in tumor biopsies predicts outcomes in patients with non-small-cell lung carcinoma or urothelial cancer treated with durvalumab. Clin Cancer Res. 2018;24(16):3857–3866. doi: 10.1158/1078-0432.CCR-17-3451.
    1. Karachaliou N, Gonzalez-Cao M, Crespo G, Drozdowskyj A, Aldeguer E, Gimenez-Capitan A, et al. Interferon gamma, an important marker of response to immune checkpoint blockade in non-small cell lung cancer and melanoma patients. Ther Adv Med Oncol. 2018;10:1–23.
    1. Donnem T, Hald SM, Paulsen EE, Richardsen E, Al-Saad S, Kilvaer TK, et al. Stromal CD8(+) T-cell density—a promising supplement to TNM staging in non–small cell lung cancer. Clin Cancer Res. 2015;21(11):2635–2643. doi: 10.1158/1078-0432.CCR-14-1905.
    1. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, et al. PD1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568–571. doi: 10.1038/nature13954.
    1. Garde-Noguera J, Martin-Martorell PM, De Julián M, Perez-Altozano J, Garcia-Sanchez J, et al. Predictive and prognostic clinical and pathological factors of nivolumab efficacy in non-small-cell lung cancer patients. Clin Transl Oncol. 2018;20(8):1072–1079. doi: 10.1007/s12094-017-1829-5.
    1. Raja R, Kuziora M, Brohawn P, Higgs BW, Gupta A, Dennis PA, et al. Early reduction in ctDNA predicts survival in lung and bladder cancer patients treated with durvalumab. Clin Cancer Res. 2018;24:3857–3866. doi: 10.1158/1078-0432.CCR-18-0386.
    1. Brody R, Zhang Y, Ballas M, Siddiqui MK, Gupta P, Barker C, et al. PD-L1 expression in advanced NSCLC: insights into risk stratification and treatment selection from a systematic literature review. Lung Cancer. 2017;112:200–215. doi: 10.1016/j.lungcan.2017.08.005.
    1. Lou Y, Diao L, Cuentas ER, Denning WL, Chen L, Fan YH, et al. Epithelial-mesenchymal transition is associated with a distinct tumor microenvironment including elevation of inflammatory signals and multiple immune checkpoints in lung adenocarcinoma. Clin Cancer Res. 2016;22(14):3630–3642. doi: 10.1158/1078-0432.CCR-15-1434.
    1. Lin G, Fan X, Zhu W, Huang C, Zhuang W, Xu H, Lin X, Hu D, Huang Y, Jiang K, Miao Q, Li C. Prognostic significance of PDL1 expression and tumor infiltrating lymphocyte in surgically resectable non-small cell lung cancer. Oncotarget. 2017;12:83986–83994.
    1. Teng F, Meng X, Wang X, Yuan J, Liu S, Mu D, et al. Expressions of CD8(+) TILs, PD-L1 and Foxp3+ TILs in stage I NSCLC guiding adjuvant chemotherapy decisions. Oncotarget. 2016;7(39):64318. doi: 10.18632/oncotarget.11793.
    1. Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W, Kim D, et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med. 2015;21:938–945. doi: 10.1038/nm.3909.
    1. Obeid JM, Wages NA, Hu Y, Deacon DH, Slingluff CL. Heterogeneity of CD8(+) tumor-infiltrating lymphocytes in non-small-cell lung cancer: impact on patient prognostic assessments and comparison of quantification by different sampling strategies. Cancer Immunol Immunother. 2017;66:33–43. doi: 10.1007/s00262-016-1908-4.
    1. Goc J, Germain C, Vo-Bourgais TK, Lupo A, Klein C, Knockaert S, et al. Dendritic cells in tumor-associated tertiary lymphoid structures signal a Th1 cytotoxic immune contexture and license the positive prognostic value of infiltrating CD8(+) T cells. Cancer Res. 2014;74(3):705–715. doi: 10.1158/0008-5472.CAN-13-1342.
    1. Brunnström H, Johansson A, Westbom-Fremer S, Backman M, Djureinovic D, Patthey A, et al. PD-L1 immunohistochemistry in clinical diagnostics of lung cancer: inter-pathologist variability is higher than assay variability. Mod Pathol. 2017;30:1411–1421. doi: 10.1038/modpathol.2017.59.
    1. Steele K, Tan TH, Korn R, Dacosta K, Brown C, Kuziora M, et al. Measuring multiple parameters of CD8+ tumor-infiltrating lymphocytes in human cancers by image analysis. J Immunother Cancer. 2018;6:20. doi: 10.1186/s40425-018-0326-x.
    1. Eisenhauer E, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumors: revised RECIST guideline (version 1.1) Eur J Cancer. 2009;45:228–247. doi: 10.1016/j.ejca.2008.10.026.
    1. Rebelatto MC, Midha A, Mistry A, Sabalos C, Schechter N, Li X, et al. Development of a programmed cell death ligand-1 immunohistochemical assay validated for analysis of non-small cell lung cancer and head and neck squamous cell carcinoma. Diagn Pathol. 2016;11:95. doi: 10.1186/s13000-016-0545-8.
    1. Brieu N, Pauly O, Zimmermann J, Binnig GK, Schmidt G. Medical imaging: image processing. 2016. Slide-specific models for segmentation of differently stained digital histopathology whole slide images; p. 978410.
    1. Cox DR. Regression models and life-tables. J R Statist Soc B. 1972;34:187–220.
    1. Clark TG, Bradburn MJ, Love SB, Altman DG. Survival analysis part I: basic concepts and first analyses. Br J Cancer. 2003;89:232–238. doi: 10.1038/sj.bjc.6601118.
    1. Bradburn MJ, Clark TG, Love SB, Altman DG. Survival analysis part II: multivariate data analysis–an introduction to concepts and methods. Br J Cancer. 2003;89:431–436. doi: 10.1038/sj.bjc.6601119.
    1. Therneau T. A package for survival analysis in R. Version 2.3.8. 2015.
    1. R Core Team . R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2017.
    1. Yang H, Shi J, Lin D, Li X, Zhao C, Wang Q, et al. Prognostic value of PD-L1 expression in combination with CD8(+) TILs density in patients with surgically resected non-small cell lung cancer. Cancer Med. 2018;7:32–45. doi: 10.1002/cam4.1243.
    1. Schmidt G, Steele K, Meier A, Herz T, Tan TH, Higgs B, Althammer S, et al. Characterizing cancers by prevalence on the PD-L1/CD8 axis. SITC), November 2017, National Harbor, MD, USA (Abstract P83).
    1. Rimm DL, Han G, Taube JM, Eunhee SY, Bridge JA, Flieder DB, et al. A prospective, multi-institutional, pathologist-based assessment of 4 immunohistochemistry assays for PD-L1 expression in non–small cell lung cancer. JAMA Oncol. 2017;3(8):1051–1058. doi: 10.1001/jamaoncol.2017.0013.
    1. Tsao MS, Kerr KM, Kockx M, Beasley MB, Borczuk AC, Botling J, et al. PD-L1 immunohistochemistry comparability study in real-life clinical samples: results of blueprint phase 2 project. J Thorac Oncol. 2018;13(9):1302–1311. doi: 10.1016/j.jtho.2018.05.013.
    1. Coudray N, Ocampo PS, Sakellaropoulos T, Narula N, Snuderl M, Fenyö D, et al. Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning. Nat Med. 2018;24(10):1559–1567. doi: 10.1038/s41591-018-0177-5.

Source: PubMed

3
Prenumerera