Serum klotho is inversely associated with metabolic syndrome in chronic kidney disease: results from the KNOW-CKD study

Hyo Jin Kim, Joongyub Lee, Dong-Wan Chae, Kyu-Beck Lee, Su Ah Sung, Tae-Hyun Yoo, Seung Hyeok Han, Curie Ahn, Kook-Hwan Oh, Hyo Jin Kim, Joongyub Lee, Dong-Wan Chae, Kyu-Beck Lee, Su Ah Sung, Tae-Hyun Yoo, Seung Hyeok Han, Curie Ahn, Kook-Hwan Oh

Abstract

Background: Metabolic syndrome (MS) is prevalent in chronic kidney disease (CKD). Klotho, a protein linked to aging, is closely associated with CKD. Each component of MS and klotho has an association. However, little is known about the association between klotho and MS per se. We investigated the association between serum klotho levels and MS using baseline cross-sectional data obtained from a large Korean CKD cohort.

Methods: Of the 2238 subjects recruited in the KoreaN Cohort Study for Outcome in Patients With Chronic Kidney Disease (KNOW-CKD) between 2011 and 2016, 484 patients with missing data on serum klotho and extreme klotho values (values lower than the detectable range or > 6000 pg/mL) or with autosomal dominant polycystic kidney disease patients were excluded. The data of the remaining 1754 subjects were included in the present study. MS was defined using the revised National Cholesterol Education Program Adult Treatment Panel (NCEP-ATP) III criteria. Serum klotho levels were measured using an enzyme-linked immunosorbent assay.

Results: Mean patient age was 54.9 ± 12.1 years and 1110 (63.3%) were male. The prevalence of MS among all study subjects was 63.7% (n = 1118). The median serum klotho level was 527 pg/mL (interquartile range [IQR]: 418-656 pg/mL). Serum klotho level was significantly lower in MS patients than patients without MS (Median [IQR]; 521 pg/mL [413, 651] vs. 541 pg/mL [427, 676], respectively; P = 0.012). After adjusting for age, sex, estimated glomerular filtration rate, and overt proteinuria, serum klotho was independently associated with MS (adjusted odds ratio [OR], 0.44; 95% confidence interval, 0.23-0.82; P = 0.010). Furthermore, the adjusted OR for MS was found to be significantly increased at serum klotho levels of < 518 pg/mL (receiver operating characteristic curve cut-off value).

Conclusions: Serum klotho was inversely associated with the presence of MS in patients with CKD.

Trial registration: This trial was registered on ClinicalTrials.gov on 26 June 2012 ( https://ichgcp.net/clinical-trials-registry/NCT01630486" title="See in ClinicalTrials.gov">NCT01630486 ).

Keywords: Chronic kidney disease; Klotho; Metabolic syndrome.

Conflict of interest statement

Ethics approval and consent to participate

The study protocol was approved by the ethical committee of each participating clinical center, including the Institutional Review Boards of Seoul National University Hospital, Severance Hospital, Kangbuk Samsung Medical Center, Seoul St. Mary’s Hospital, Gil Hospital, Eulji General Hospital, Chonnam National University Hospital, and Busan Paik Hospital. All participating patients provided written informed consent. The study protocol was in accordance with the principles of the Declaration of Helsinki.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Prevalence of the metabolic syndrome and components of metabolic syndrome in the study subjects. Sixty four percent of patients had MS. Of the components of MS, high blood pressure (95.8%) was the most common, followed by high fasting glucose (63.7%) and abdominal obesity (53.8%). MS, metabolic syndrome; HDL, high-density lipoprotein
Fig. 2
Fig. 2
Prevalence of metabolic syndrome across CKD stages. The prevalence of MS was > 50% even for early stage CKD. The prevalence of MS was higher in advanced stages of CKD (P < 0.001). MS, metabolic syndrome
Fig. 3
Fig. 3
Multivariable-adjusted odds ratios of metabolic syndrome according to levels of estimated glomerular filtration rate. An eGFR of 60 ml/min/1.73m2, as a reference value of decreased renal function, was taken as the reference point (OR = 1.00). The adjusted OR of MS was significantly increased at eGFR levels of < 60 ml/min/1.73m2. The model was adjusted for age, sex, eGFR, and overt proteinuria. The solid line represents the multivariable-adjusted ORs of MS according to levels of eGFR. The dashed lines indicate 95% confidence intervals. eGFR, estimated glomerular filtration rate; OR, odds ratio; MS, metabolic syndrome
Fig. 4
Fig. 4
Serum klotho level according to metabolic syndrome and numbers of metabolic syndrome components. a Serum klotho was significantly lower in MS patients compared with patients without MS (median [interquartile range]; 521 pg/mL [413, 651] vs. 541 pg/mL [427, 676], respectively; P = 0.012). b Klotho levels tended to decrease as numbers of MS components increased (P = 0.038). MS, metabolic syndrome
Fig. 5
Fig. 5
Serum klotho levels across CKD stages. Advanced CKD stages were associated with lower serum klotho levels (P < 0.001). CKD, chronic kidney disease
Fig. 6
Fig. 6
Multivariable-adjusted odds ratio of metabolic syndrome according to levels of serum klotho. A serum klotho level of 518 pg/mL (ROC curve cut-off value) was taken as the reference point (OR = 1.00). The adjusted OR of MS was significantly increased at serum klotho levels of  500 mg/day; ROC, receiver operating characteristic; eGFR, estimated glomerular filtration rate; OR, odds ratio; MS, metabolic syndrome

References

    1. Laaksonen DE, Lakka HM, Niskanen LK, Kaplan GA, Salonen JT, Lakka TA. Metabolic syndrome and development of diabetes mellitus: application and validation of recently suggested definitions of the metabolic syndrome in a prospective cohort study. Am J Epidemiol. 2002;156:1070–1077. doi: 10.1093/aje/kwf145.
    1. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation. 2005;112:2735–2752. doi: 10.1161/CIRCULATIONAHA.105.169404.
    1. Thomas G, Sehgal AR, Kashyap SR, Srinivas TR, Kirwan JP, Navaneethan SD. Metabolic syndrome and kidney disease: a systematic review and meta-analysis. Clin J Am Soc Nephrol. 2011;6:2364–2373. doi: 10.2215/CJN.02180311.
    1. Kurella M, Lo JC, Chertow GM. Metabolic syndrome and the risk for chronic kidney disease among nondiabetic adults. J Am Soc Nephrol. 2005;16:2134–2140. doi: 10.1681/ASN.2005010106.
    1. Nashar K, Egan BM. Relationship between chronic kidney disease and metabolic syndrome: current perspectives. Diabetes Metab Syndr Obes. 2014;7:421–435. doi: 10.2147/DMSO.S45183.
    1. Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997;390:45–51. doi: 10.1038/36285.
    1. Hu MC, Kuro-o M, Moe OW. Klotho and chronic kidney disease. Contrib Nephrol. 2013;180:47–63. doi: 10.1159/000346778.
    1. Arking DE, Atzmon G, Arking A, Barzilai N, Dietz HC. Association between a functional variant of the KLOTHO gene and high-density lipoprotein cholesterol, blood pressure, stroke, and longevity. Circ Res. 2005;96:412–418. doi: 10.1161/01.RES.0000157171.04054.30.
    1. Yamagishi T, Saito Y, Nakamura T, Takeda S, Kanai H, Sumino H, et al. Troglitazone improves endothelial function and augments renal klotho mRNA expression in Otsuka Long-Evans Tokushima Fatty (OLETF) rats with multiple atherogenic risk factors. Hypertens Res. 2001;24:705–709. doi: 10.1291/hypres.24.705.
    1. Saito Y, Nakamura T, Ohyama Y, Suzuki T, Iida A, Shiraki-Iida T, et al. In vivo klotho gene delivery protects against endothelial dysfunction in multiple risk factor syndrome. Biochem Biophys Res Commun. 2000;276:767–772. doi: 10.1006/bbrc.2000.3470.
    1. Rhee EJ, Oh KW, Yun EJ, Jung CH, Lee WY, Kim SW, et al. Relationship between polymorphisms G395A in promoter and C1818T in exon 4 of the KLOTHO gene with glucose metabolism and cardiovascular risk factors in Korean women. J Endocrinol Investig. 2006;29:613–618. doi: 10.1007/BF03344160.
    1. Majumdar V, Christopher R. Association of exonic variants of Klotho with metabolic syndrome in Asian Indians. Clin Chim Acta. 2011;412:1116–1121. doi: 10.1016/j.cca.2011.02.034.
    1. Oh KH, Park SK, Park HC, Chin HJ, Chae DW, Choi KH, et al. KNOW-CKD (KoreaN cohort study for outcome in patients with chronic kidney disease): design and methods. BMC Nephrol. 2014;15:80. doi: 10.1186/1471-2369-15-80.
    1. Kuro-o M. Klotho in health and disease. Curr Opin Nephrol Hypertens. 2012;21:362–368. doi: 10.1097/MNH.0b013e32835422ad.
    1. Hu MC, Moe OW. Klotho as a potential biomarker and therapy for acute kidney injury. Nat Rev Nephrol. 2012;8:423–429. doi: 10.1038/nrneph.2012.92.
    1. Seo MY, Yang J, Lee JY, Kim K, Kim SC, Chang H, et al. Renal Klotho expression in patients with acute kidney injury is associated with the severity of the injury. Korean J Intern Med. 2015;30:489–495. doi: 10.3904/kjim.2015.30.4.489.
    1. WHO expert committee. Physical status: the use and interpretation of anthropometry. Report of a WHO Expert Committee. World Health Organ Tech Rep Ser. 1995;854:1-452.
    1. Siekmann L. Determination of creatinine in human serum by isotope dilution-mass spectrometry. Definitive methods in clinical chemistry, IV. J Clin Chem Clin Biochem. 1985;23:137–144.
    1. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150:604–612. doi: 10.7326/0003-4819-150-9-200905050-00006.
    1. Yamazaki Y, Imura A, Urakawa I, Shimada T, Murakami J, Aono Y, et al. Establishment of sandwich ELISA for soluble alpha-Klotho measurement: age-dependent change of soluble alpha-Klotho levels in healthy subjects. Biochem Biophys Res Commun. 2010;398:513–518. doi: 10.1016/j.bbrc.2010.06.110.
    1. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; American heart association; world heart federation; international atherosclerosis society; and international association for the study of obesity. Circulation. 2009;120:1640–1645. doi: 10.1161/CIRCULATIONAHA.109.192644.
    1. Hara K, Matsushita Y, Horikoshi M, Yoshiike N, Yokoyama T, Tanaka H, et al. A proposal for the cutoff point of waist circumference for the diagnosis of metabolic syndrome in the Japanese population. Diabetes Care. 2006;29:1123–1124. doi: 10.2337/dc05-2540.
    1. Chen J, Muntner P, Hamm LL, Jones DW, Batuman V, Fonseca V, et al. The metabolic syndrome and chronic kidney disease in U.S. adults. Ann Intern Med. 2004;140:167–174. doi: 10.7326/0003-4819-140-3-200402030-00007.
    1. Yang J, Matsukawa N, Rakugi H, Imai M, Kida I, Nagai M, et al. Upregulation of cAMP is a new functional signal pathway of Klotho in endothelial cells. Biochem Biophys Res Commun. 2003;301:424–429. doi: 10.1016/S0006-291X(02)03056-5.
    1. Zhang H, Li Y, Fan Y, Wu J, Zhao B, Guan Y, et al. Klotho is a target gene of PPAR-gamma. Kidney Int. 2008;74:732–739. doi: 10.1038/ki.2008.244.
    1. Causes of death United States renal data system. Am J Kidney Dis. 1998;32:S81–S88. doi: 10.1053/ajkd.1998.v32.pm9713410.
    1. Foley RN, Parfrey PS, Sarnak MJ. Clinical epidemiology of cardiovascular disease in chronic renal disease. Am J Kidney Dis. 1998;32:S112–S119. doi: 10.1053/ajkd.1998.v32.pm9820470.
    1. Stenvinkel P, Carrero JJ, Axelsson J, Lindholm B, Heimburger O, Massy Z. Emerging biomarkers for evaluating cardiovascular risk in the chronic kidney disease patient: how do new pieces fit into the uremic puzzle? Clin J Am Soc Nephrol. 2008;3:505–521. doi: 10.2215/CJN.03670807.
    1. Zhang X, Lerman LO. The metabolic syndrome and chronic kidney disease. Transl Res. 2017;183:14-25.
    1. Wahba IM, Mak RH. Obesity and obesity-initiated metabolic syndrome: mechanistic links to chronic kidney disease. Clin J Am Soc Nephrol. 2007;2:550–562. doi: 10.2215/CJN.04071206.
    1. Spahis S, Borys JM, Levy E. Metabolic syndrome as a multifaceted risk factor for oxidative stress. Antioxid Redox Signal. 2016.
    1. Tziomalos K, Athyros VG, Karagiannis A, Mikhailidis DP. Endothelial dysfunction in metabolic syndrome: prevalence, pathogenesis and management. Nutr Metab Cardiovasc Dis. 2010;20:140–146. doi: 10.1016/j.numecd.2009.08.006.
    1. Rangel-Zuniga OA, Corina A, Lucena-Porras B, Cruz-Teno C, Gomez-Delgado F, Jimenez-Lucena R, et al. TNFA gene variants related to the inflammatory status and its association with cellular aging: from the CORDIOPREV study. Exp Gerontol. 2016;83:56–62. doi: 10.1016/j.exger.2016.07.015.
    1. Hamilton ML, Van Remmen H, Drake JA, Yang H, Guo ZM, Kewitt K, et al. Does oxidative damage to DNA increase with age? Proc Natl Acad Sci U S A. 2001;98:10469–10474. doi: 10.1073/pnas.171202698.
    1. Salmon AB. Beyond diabetes: does obesity-induced oxidative stress drive the aging process? Antioxidants (Basel). 2016;5:24.
    1. Izquierdo MC, Perez-Gomez MV, Sanchez-Nino MD, Sanz AB, Ruiz-Andres O, Poveda J, et al. Klotho, phosphate and inflammation/ageing in chronic kidney disease. Nephrol Dial Transplant. 2012;27(Suppl 4):iv6–i10. doi: 10.1093/ndt/gfs426.
    1. Zhao Y, Banerjee S, Dey N, LeJeune WS, Sarkar PS, Brobey R, et al. Klotho depletion contributes to increased inflammation in kidney of the db/db mouse model of diabetes via RelA (serine)536 phosphorylation. Diabetes. 2011;60:1907–1916. doi: 10.2337/db10-1262.
    1. Oh HJ, Nam BY, Lee MJ, Kim CH, Koo HM, Doh FM, et al. Decreased circulating klotho levels in patients undergoing dialysis and relationship to oxidative stress and inflammation. Perit Dial Int. 2015;35:43–51. doi: 10.3747/pdi.2013.00150.
    1. Yamamoto M, Clark JD, Pastor JV, Gurnani P, Nandi A, Kurosu H, et al. Regulation of oxidative stress by the anti-aging hormone klotho. J Biol Chem. 2005;280:38029–38034. doi: 10.1074/jbc.M509039200.
    1. Carpenter TO. Insogna KL, Zhang JH, Ellis B, Nieman S, Simpson C, et al. Circulating levels of soluble klotho and FGF23 in X-linked hypophosphatemia: circadian variance, effects of treatment, and relationship to parathyroid status. J Clin Endocrinol Metab. 2010;95:E352–E357. doi: 10.1210/jc.2010-0589.

Source: PubMed

3
Prenumerera