Sonographic optic nerve sheath diameter as a surrogate measure for intracranial pressure in anesthetized patients in the Trendelenburg position

Ji-Hyun Chin, Hyungseok Seo, Eun-Ho Lee, Joohyun Lee, Jun Hyuk Hong, Jai-Hyun Hwang, Young-Kug Kim, Ji-Hyun Chin, Hyungseok Seo, Eun-Ho Lee, Joohyun Lee, Jun Hyuk Hong, Jai-Hyun Hwang, Young-Kug Kim

Abstract

Background: It remains to be elucidated whether the Trendelenburg position increases intracranial pressure (ICP). ICP can be evaluated by measuring the sonographic optic nerve sheath diameter (ONSD). We investigated the effect of the isolated Trendelenburg position on ONSD in patients undergoing robot-assisted laparoscopic radical prostatectomy. Additionally, we evaluated the effect of the Trendelenburg position combined with pneumoperitoneum on ONSD.

Methods: Twenty-one patients scheduled for robot-assisted laparoscopic radical prostatectomy were enrolled. Sonographic ONSDs and hemodynamic parameters were measured at specific time points: in the supine position after induction of anesthesia, 3 min after the steep Trendelenburg position (35° incline), 3 min after the steep Trendelenburg position combined with pneumoperitoneum, and in the supine position after desufflation of the pneumoperitoneum.

Results: The ONSD 3 min after the steep Trendelenburg position was significantly higher than that of the supine position after induction of anesthesia (5.1 ± 0.3 mm vs. 4.5 ± 0.4 mm). In addition, the ONSD 3 min after the steep Trendelenburg position combined with pneumoperitoneum was higher than that of the supine position after induction of anesthesia (4.9 ± 0.4 mm vs. 4.5 ± 0.4 mm). The ONSD in the supine position after desufflation of the pneumoperitoneum was similar to that in the supine position after induction of anesthesia.

Conclusions: Use of the isolated steep Trendelenburg position, for even a short duration, increased the sonographic ONSD, providing a better understanding of the effect of only a transient steep Trendelenburg position on ONSD as a surrogate measure for ICP.

Keywords: Intracranial pressure; Optic nerve sheath diameter; Trendelenburg position.

Figures

Figure 1
Figure 1
Change in optic nerve sheath diameter (ONSD) between the supine and the steep Trendelenburg position. A significant increase was found in the ONSD 3 min after the patient position was changed from supine to steep Trendelenburg. TSUP: in the supine position after induction of anesthesia; TTREN: 3 min after the steep Trendelenburg position (35° incline).

References

    1. Lee ST. Intracranial pressure changes during positioning of patients with severe head injury. Heart Lung. 1989;18(4):411–4.
    1. Mavrocordatos P, Bissonnette B, Ravussin P. Effects of neck position and head elevation on intracranial pressure in anaesthetized neurosurgical patients: preliminary results. J Neurosurg Anesthesiol. 2000;12(1):10–4. doi: 10.1097/00008506-200001000-00003.
    1. Kim MS, Bai SJ, Lee JR, Choi YD, Kim YJ, Choi SH. Increase in intracranial pressure during carbon dioxide pneumoperitoneum with steep trendelenburg positioning proven by ultrasonographic measurement of optic nerve sheath diameter. J Endourol. 2014;28(7):801–6. doi: 10.1089/end.2014.0019.
    1. Geeraerts T, Merceron S, Benhamou D, Vigue B, Duranteau J. Non-invasive assessment of intracranial pressure using ocular sonography in neurocritical care patients. Intensive Care Med. 2008;34(11):2062–7. doi: 10.1007/s00134-008-1149-x.
    1. Geeraerts T, Launey Y, Martin L, Pottecher J, Vigue B, Duranteau J, et al. Ultrasonography of the optic nerve sheath may be useful for detecting raised intracranial pressure after severe brain injury. Intensive Care Med. 2007;33(10):1704–11. doi: 10.1007/s00134-007-0797-6.
    1. Major R, Girling S, Boyle A. Ultrasound measurement of optic nerve sheath diameter in patients with a clinical suspicion of raised intracranial pressure. Emerg Med J. 2011;28(8):679–81. doi: 10.1136/emj.2009.087353.
    1. Kristiansson H, Nissborg E, Bartek J, Jr, Andresen M, Reinstrup P, Romner B. Measuring elevated intracranial pressure through noninvasive methods: a review of the literature. J Neurosurg Anesthesiol. 2013;25(4):372–85. doi: 10.1097/ANA.0b013e31829795ce.
    1. Liu D, Kahn M. Measurement and relationship of subarachnoid pressure of the optic nerve to intracranial pressures in fresh cadavers. Am J Ophthalmol. 1993;116(5):548–56. doi: 10.1016/S0002-9394(14)73195-2.
    1. Hansen HC, Helmke K. Validation of the optic nerve sheath response to changing cerebrospinal fluid pressure: ultrasound findings during intrathecal infusion tests. J Neurosurg. 1997;87(1):34–40. doi: 10.3171/jns.1997.87.1.0034.
    1. Newman WD, Hollman AS, Dutton GN, Carachi R. Measurement of optic nerve sheath diameter by ultrasound: a means of detecting acute raised intracranial pressure in hydrocephalus. Br J Ophthalmol. 2002;86(10):1109–13. doi: 10.1136/bjo.86.10.1109.
    1. Blaivas M, Theodoro D, Sierzenski PR. Elevated intracranial pressure detected by bedside emergency ultrasonography of the optic nerve sheath. Acad Emerg Med. 2003;10(4):376–81. doi: 10.1111/j.1553-2712.2003.tb01352.x.
    1. Helmke K, Burdelski M, Hansen HC. Detection and monitoring of intracranial pressure dysregulation in liver failure by ultrasound. Transplantation. 2000;70(2):392–5. doi: 10.1097/00007890-200007270-00029.
    1. Tayal VS, Neulander M, Norton HJ, Foster T, Saunders T, Blaivas M. Emergency department sonographic measurement of optic nerve sheath diameter to detect findings of increased intracranial pressure in adult head injury patients. Ann Emerg Med. 2007;49(4):508–14. doi: 10.1016/j.annemergmed.2006.06.040.
    1. Kimberly HH, Shah S, Marill K, Noble V. Correlation of optic nerve sheath diameter with direct measurement of intracranial pressure. Acad Emerg Med. 2008;15(2):201–4. doi: 10.1111/j.1553-2712.2007.00031.x.
    1. Moretti R, Pizzi B. Ultrasonography of the optic nerve in neurocritically ill patients. Acta Anaesthesiol Scand. 2011;55(6):644–52. doi: 10.1111/j.1399-6576.2011.02432.x.
    1. Seo H, Kim YK, Shin WJ, Hwang GS. Ultrasonographic optic nerve sheath diameter is correlated with arterial carbon dioxide concentration during reperfusion in liver transplant recipients. Transplant Proc. 2013;45(6):2272–6. doi: 10.1016/j.transproceed.2012.12.032.
    1. Rajajee V, Fletcher JJ, Rochlen LR, Jacobs TL. Comparison of accuracy of optic nerve ultrasound for the detection of intracranial hypertension in the setting of acutely fluctuating vs stable intracranial pressure: post-hoc analysis of data from a prospective, blinded single center study. Crit Care. 2012;16(3):R79. doi: 10.1186/CC11336.
    1. Steiner LA, Andrews PJ. Monitoring the injured brain: ICP and CBF. Br J Anaesth. 2006;97(1):26–38. doi: 10.1093/bja/ael110.
    1. Fahy BG, Barnas GM, Nagle SE, Flowers JL, Njoku MJ, Agarwal M. Effects of Trendelenburg and reverse Trendelenburg postures on lung and chest wall mechanics. J Clin Anesth. 1996;8(3):236–44. doi: 10.1016/0952-8180(96)00017-7.
    1. Guerci AD, Shi AY, Levin H, Tsitlik J, Weisfeldt ML, Chandra N. Transmission of intrathoracic pressure to the intracranial space during cardiopulmonary resuscitation in dogs. Circ Res. 1985;56(1):20–30. doi: 10.1161/01.RES.56.1.20.
    1. Whiteley JR, Taylor J, Henry M, Epperson TI, Hand WR. Detection of elevated intracranial pressure in robot-assisted laparoscopic radical prostatectomy using ultrasonography of optic nerve sheath diameter. J Neurosurg Anesthesiol. 2015;27(2):155–9. doi: 10.1097/ANA.0000000000000106.
    1. Verdonck P, Kalmar AF, Suy K, Geeraerts T, Vercauteren M, Mottrie A, et al. Optic nerve sheath diameter remains constant during robot assisted laparoscopic radical prostatectomy. PLoS One. 2014;9(11):e111916. doi: 10.1371/journal.pone.0111916.
    1. Holmstrom A, Akeson J. Desflurane increases intracranial pressure more and sevoflurane less than isoflurane in pigs subjected to intracranial hypertension. J Neurosurg Anesthesiol. 2004;16(2):136–43. doi: 10.1097/00008506-200404000-00005.
    1. Kalmar AF, Foubert L, Hendrickx JF, Mottrie A, Absalom A, Mortier EP, et al. Influence of steep Trendelenburg position and CO(2) pneumoperitoneum on cardiovascular, cerebrovascular, and respiratory homeostasis during robotic prostatectomy. Br J Anaesth. 2010;104(4):433–9. doi: 10.1093/bja/aeq018.
    1. Choi DK, Lee IG, Hwang JH. Arterial to end-tidal carbon dioxide pressure gradient increases with age in the steep Trendelenburg position with pneumoperitoneum. Korean J Anesthesiol. 2012;63(3):209–15. doi: 10.4097/kjae.2012.63.3.209.
    1. Chin JH, Choi DK, Hwang JH, Kim YK. Re: increase in intracranial pressure during carbon dioxide pneumoperitoneum with steep Trendelenburg positioning proven by ultrasonographic measurement of optic nerve sheath diameter. J Endourol. 2015;29(1):100–1. doi: 10.1089/end.2014.0156.
    1. Park EY, Koo BN, Min KT, Nam SH. The effect of pneumoperitoneum in the steep Trendelenburg position on cerebral oxygenation. Acta Anaesthesiol Scand. 2009;53(7):895–9. doi: 10.1111/j.1399-6576.2009.01991.x.
    1. Harrison GR. The effect of posture on cerebral oxygenation during abdominal surgery. Anaesthesia. 2001;56(12):1181–4. doi: 10.1046/j.1365-2044.2001.02084.x.
    1. Lee JR, Lee PB, Do SH, Jeon YT, Lee JM, Hwang JY, et al. The effect of gynaecological laparoscopic surgery on cerebral oxygenation. J Int Med Res. 2006;34(5):531–6. doi: 10.1177/147323000603400511.
    1. Closhen D, Treiber AH, Berres M, Sebastiani A, Werner C, Engelhard K, et al. Robotic assisted prostatic surgery in the Trendelenburg position does not impair cerebral oxygenation measured using two different monitors: A clinical observational study. Eur J Anaesthesiol. 2014;31(2):104–9. doi: 10.1097/EJA.0000000000000000.
    1. Choi SH, Kim SH, Lee SJ, Soh SR, Oh YJ. Cerebral oxygenation during laparoscopic surgery: jugular bulb versus regional cerebral oxygen saturation. Yonsei Med J. 2013;54(1):225–30. doi: 10.3349/ymj.2013.54.1.225.
    1. Romagnuolo L, Tayal V, Tomaszewski C, Saunders T, Norton HJ. Optic nerve sheath diameter does not change with patient position. Am J Emerg Med. 2005;23(5):686–8. doi: 10.1016/j.ajem.2004.11.004.
    1. Matta BF, Heath KJ, Tipping K, Summors AC. Direct cerebral vasodilatory effects of sevoflurane and isoflurane. Anesthesiology. 1999;91(3):677–80. doi: 10.1097/00000542-199909000-00019.
    1. Dubourg J, Javouhey E, Geeraerts T, Messerer M, Kassai B. Ultrasonography of optic nerve sheath diameter for detection of raised intracranial pressure: a systematic review and meta-analysis. Intensive Care Med. 2011;37(7):1059–68. doi: 10.1007/s00134-011-2224-2.

Source: PubMed

3
Prenumerera