Clustering and conservation patterns of human microRNAs

Yael Altuvia, Pablo Landgraf, Gila Lithwick, Naama Elefant, Sébastien Pfeffer, Alexei Aravin, Michael J Brownstein, Thomas Tuschl, Hanah Margalit, Yael Altuvia, Pablo Landgraf, Gila Lithwick, Naama Elefant, Sébastien Pfeffer, Alexei Aravin, Michael J Brownstein, Thomas Tuschl, Hanah Margalit

Abstract

MicroRNAs (miRNAs) are approximately 22 nt-long non-coding RNA molecules, believed to play important roles in gene regulation. We present a comprehensive analysis of the conservation and clustering patterns of known miRNAs in human. We show that human miRNA gene clustering is significantly higher than expected at random. A total of 37% of the known human miRNA genes analyzed in this study appear in clusters of two or more with pairwise chromosomal distances of at most 3000 nt. Comparison of the miRNA sequences with their homologs in four other organisms reveals a typical conservation pattern, persistent throughout the clusters. Furthermore, we show enrichment in the typical conservation patterns and other miRNA-like properties in the vicinity of known miRNA genes, compared with random genomic regions. This may imply that additional, yet unknown, miRNAs reside in these regions, consistent with the current recognition that there are overlooked miRNAs. Indeed, by comparing our predictions with cloning results and with identified miRNA genes in other mammals, we corroborate the predictions of 18 additional human miRNA genes in the vicinity of the previously known ones. Our study raises the proportion of clustered human miRNAs that are <3000 nt apart to 42%. This suggests that the clustering of miRNA genes is higher than currently acknowledged, alluding to its evolutionary and functional implications.

Figures

Figure 1
Figure 1
Cumulative distance distribution of miRNA genes and other types of human genomic functional elements. For each of the described elements, the distances (in nucleotides) between every two same-chromosome same-strand successive elements were calculated. Distance is drawn on a logarithmic scale. The different elements are marked: orange (exon of protein-coding genes), green (protein-coding gene), black (snoRNA), blue (tRNA), red (miRNA) and cyan (snRNA). The genomic coordinates were derived from the UCSC July 2003 human genome assembly build 34, hg16 (20,21) (). Protein-coding genes and exons were based on the refGene and knownGene tables. SnoRNA, tRNA and snRNA pseudogenes were excluded.
Figure 2
Figure 2
Conservation patterns of known and predicted human miRNAs. The conservation patterns are based on the UCSC phastCons scores (22,23) (). The chromosomal regions of the miRNAs with an additional 3000 nt flanking on both sides are presented. The chromosomal coordinates follow the build 34 assembly (hg16) of the human genome from UCSC (20,21) (). For simplicity the x-axis displays the relative positions. Known miRNAs are designated by their Rfam name omitting the ‘hsa’ prefix (19). The predicted miRNAs that were verified experimentally fall into two categories: (E)-verified experimentally in this study, and (S)-verified by similarity to a homologous miRNA in another organism. The miRNA orientation is marked by an arrow. (A) known large miRNA cluster; (B) known miRNA clustered pair; (C) example of a miRNA prediction that extends a known pair cluster; (D) reveals a new multi-member cluster; and (E) reveals a new clustered pair. The plots are not plotted to scale and, therefore, the conserved region width is a function of the length of the presented region; the longer the region, the narrower is the presented profile).

References

    1. Lee Y., Jeon K., Lee J.T., Kim S., Kim V.N. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J. 2002;21:4663–4670.
    1. Cullen B.R. Transcription and processing of human microRNA precursors. Mol. Cell. 2004;16:861–865.
    1. Tomari Y., Zamore P.D. MicroRNA biogenesis: drosha can't cut it without a partner. Curr. Biol. 2005;15:R61–R64.
    1. Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–355.
    1. Bartel D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–297.
    1. He L., Hannon G.J. MicroRNAs: small RNAs with a big role in gene regulation. Nature Rev. Genet. 2004;5:522–531.
    1. Rodriguez A., Griffiths-Jones S., Ashurst J.L., Bradley A. Identification of mammalian microRNA host genes and transcription units. Genome Res. 2004;14:1902–1910.
    1. Weber M.J. New human and mouse microRNA genes found by homology search. FEBS J. 2005;272:59–73.
    1. Lau N.C., Lim L.P., Weinstein E.G., Bartel D.P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science. 2001;294:858–862.
    1. Lagos-Quintana M., Rauhut R., Lendeckel W., Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001;294:853–858.
    1. Mourelatos Z., Dostie J., Paushkin S., Sharma A., Charroux B., Abel L., Rappsilber J., Mann M., Dreyfuss G. miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev. 2002;16:720–728.
    1. Aravin A.A., Lagos-Quintana M., Yalcin A., Zavolan M., Marks D., Snyder B., Gaasterland T., Meyer J., Tuschl T. The small RNA profile during Drosophila melanogaster development. Dev. Cell. 2003;5:337–350.
    1. Tanzer A., Stadler P.F. Molecular evolution of a microRNA cluster. J. Mol. Biol. 2004;339:327–335.
    1. Seitz H., Royo H., Bortolin M.L., Lin S.P., Ferguson-Smith A.C., Cavaille J. A large imprinted microRNA gene cluster at the mouse Dlk1-Gtl2 domain. Genome Res. 2004;14:1741–1748.
    1. Houbaviy H.B., Murray M.F., Sharp P.A. Embryonic stem cell-specific MicroRNAs. Dev. Cell. 2003;5:351–358.
    1. Bashirullah A., Pasquinelli A.E., Kiger A.A., Perrimon N., Ruvkun G., Thummel C.S. Coordinate regulation of small temporal RNAs at the onset of Drosophila metamorphosis. Dev. Biol. 2003;259:1–8.
    1. Sempere L.F., Sokol N.S., Dubrovsky E.B., Berger E.M., Ambros V. Temporal regulation of microRNA expression in Drosophila melanogaster mediated by hormonal signals and broad-Complex gene activity. Dev. Biol. 2003;259:9–18.
    1. Baskerville S., Bartel D.P. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA. 2005;11:241–247.
    1. Griffiths-Jones S. The microRNA Registry. Nucleic Acids Res. 2004;32:D109–D111.
    1. Kent W.J., Sugnet C.W., Furey T.S., Roskin K.M., Pringle T.H., Zahler A.M., Haussler D. The human genome browser at UCSC. Genome Res. 2002;12:996–1006.
    1. Karolchik D., Baertsch R., Diekhans M., Furey T.S., Hinrichs A., Lu Y.T., Roskin K.M., Schwartz M., Sugnet C.W., Thomas D.J., et al. The UCSC Genome Browser Database. Nucleic Acids Res. 2003;31:51–54.
    1. Siepel A., Haussler D. Combining phylogenetic and hidden Markov models in biosequence analysis. J. Comput. Biol. 2004;11:413–428.
    1. Siepel A., Haussler D. Phylogenetic hidden Markov models. In: Nielsen R., editor. Statistical Methods in Molecular Evolution. Springer: (in press)
    1. Hofacker I.L., Fontana W., Stadler P.F., Bonhoeffer L.S., Tacker M., Schuster P. Fast folding and comparison of RNA secondary structures. Monatsh. Chem. 1994;125:167–188.
    1. Meister G., Landthaler M., Patkaniowska A., Dorsett Y., Teng G., Tuschl T. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell. 2004;15:185–197.
    1. Pfeffer S., Lagos-Quintana M., Tuschl T. Cloning of small RNA molecules. In: Ausubel F.M., Brent R., Kingston R.E., Moore D.D., Seidman J.G., Smith J.A., Struhl K., editors. Current Protocols in Molecular Biology. New York: John Wiley and Sons; 2003. pp. 26.4.1–26.4.18.
    1. Pfeffer S., Zavolan M., Grasser F.A., Chien M., Russo J.J., Ju J., John B., Enright A.J., Marks D., Sander C., et al. Identification of virus-encoded microRNAs. Science. 2004;304:734–736.
    1. Van Arsdell S.W., Weiner A.M. Human genes for U2 small nuclear RNA are tandemly repeated. Mol. Cell. Biol. 1984;4:492–499.
    1. Lai E.C., Tomancak P., Williams R.W., Rubin G.M. Computational identification of Drosophila microRNA genes. Genome Biol. 2003;4:R42.
    1. Berezikov E., Guryev V., van de Belt J., Wienholds E., Plasterk R.H., Cuppen E. Phylogenetic shadowing and computational identification of human microRNA genes. Cell. 2005;120:21–24.
    1. Ambros V., Bartel B., Bartel D.P., Burge C.B., Carrington J.C., Chen X., Dreyfuss G., Eddy S.R., Griffiths-Jones S., Marshall M., et al. A uniform system for microRNA annotation. RNA. 2003;9:277–279.
    1. Lim L.P., Lau N.C., Weinstein E.G., Abdelhakim A., Yekta S., Rhoades M.W., Burge C.B., Bartel D.P. The microRNAs of Caenorhabditis elegans. Genes Dev. 2003;17:991–1008.
    1. Lim L.P., Glasner M.E., Yekta S., Burge C.B., Bartel D.P. Vertebrate microRNA genes. Science. 2003;299:1540.
    1. Ohler U., Yekta S., Lim L.P., Bartel D.P., Burge C.B. Patterns of flanking sequence conservation and a characteristic upstream motif for microRNA gene identification. RNA. 2004;10:1309–1322.
    1. Ambros V., Lee R.C., Lavanway A., Williams P.T., Jewell D. MicroRNAs and other tiny endogenous RNAs in C.elegans. Curr. Biol. 2003;13:807–818.
    1. Legendre M., Lambert A., Gautheret D. Profile-based detection of microRNA precursors in animal genomes. Bioinformatics. 2005;21:841–845.
    1. Xie X., Lu J., Kulbokas E.J., Golub T.R., Mootha V., Lindblad-Toh K., Lander E.S., Kellis M. Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature. 2005;434:338–345.
    1. Watanabe T., Takeda A., Mise K., Okuno T., Suzuki T., Minami N., Imai H. Stage-specific expression of microRNAs during Xenopus development. FEBS Lett. 2005;579:318–324.

Source: PubMed

3
Prenumerera