Association of rs699947 (-2578 C/A) and rs2010963 (-634 G/C) Single Nucleotide Polymorphisms of the VEGF Gene, VEGF-A and Leptin Serum Level, and Cardiovascular Risk in Patients with Excess Body Mass: A Case-Control Study

Damian Skrypnik, Adrianna Mostowska, Paweł Piotr Jagodziński, Paweł Bogdański, Damian Skrypnik, Adrianna Mostowska, Paweł Piotr Jagodziński, Paweł Bogdański

Abstract

Background: Two single nucleotide polymorphisms (SNPs) of the VEGF gene, rs699947 and rs2010963, are responsible for differentiated gene expression. A mutual dependence between VEGF and leptin serum level has been observed. This study investigated the associations between the rs699947 and rs2010963 SNPs of VEGF gene, VEGF-A, and leptin serum concentrations, and cardiometabolic risk of body mass excess.

Methods: In this case-control study, 212 subjects with excess body mass and 145 normal-weight controls gave blood samples and underwent anthropometric and pulse wave analysis. Genotyping of VEGF gene was carried out to analyze the rs699947 (-2578 C/A) and rs2010963 (-634 G/C) SNPs. (ClinicalTrials.gov ID: NCT04077554).

Results: This study showed a significant positive correlation between serum levels of VEGF-A and leptin in individuals with excess body mass possessing the CC genotype of the rs699947 variant of the VEGF gene. It has been registered that an increase in VEGF-A serum level correlates with an increase in arterial stiffness in excess body mass patients harboring AA genotype of the rs699947 (-2578 C/A) variant of the VEGF gene. No differences in VEGF-A and leptin serum concentrations were noted between particular genotypes.

Conclusions: The CC genotype of the rs699947 variant of the VEGF gene promotes a positive interdependency between leptin and VEGF-A serum levels in subjects with excess body mass.

Keywords: VEGF gene polymorphism; cardiovascular risk; leptin; obesity; vascular endothelial growth factor.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Finucane M.M., Stevens G.A., Cowan M., Danaei G., Lin J.K., Paciorek C.J., Singh G.M., Gutierrez H.R., Lu Y., Bahalim A.N., et al. National, regional, and global trends in body mass index since 1980: Systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet. 2011;377:557. doi: 10.1016/S0140-6736(10)62037-5.
    1. Eurostat . Eurostat Regional Yearbook. 2017 ed. Publications Office of the European Union; Luxembourg: 2017.
    1. Nguyen D.M., El-Serag H.B. The Epidemiology of Obesity. Gastroenterol. Clin. N. Am. 2010;39:1–7. doi: 10.1016/j.gtc.2009.12.014.
    1. Finkelstein E.A., Trogdon J.G., Cohen J.W., Dietz W. Annual medical spending attributable to obesity: Payer-and service-specific estimates. Health Aff. 2009;28:w822–w831. doi: 10.1377/hlthaff.28.5.w822.
    1. Wang H., Wang Q., Venugopal J., Wang J., Kleiman K., Guo C., Eitzman D.T. Obesity-induced Endothelial Dysfunction is Prevented by Neutrophil Extracellular Trap Inhibition. Sci. Rep. 2018;8:1–7. doi: 10.1038/s41598-018-23256-y.
    1. Chen J., Fu Y., Day D.S., Sun Y., Wang S., Liang X., Gu F., Zhang F., Stevens S.M., Zhou P., et al. VEGF amplifies transcription through ETS1 acetylation to enable angiogenesis /631/136/16 /631/337/572 article. Nat. Commun. 2017;8:1–13. doi: 10.1038/s41467-017-00405-x.
    1. Ferrara N. Vascular endothelial growth factor: Basic science and clinical progress. Endocr. Rev. 2004;25:581–611. doi: 10.1210/er.2003-0027.
    1. Du X., Ou X., Song T., Zhang W., Cong F., Zhang S., Xiong Y. Adenosine A2B receptor stimulates angiogenesis by inducing VEGF and eNOS in human microvascular endothelial cells. Exp. Biol. Med. 2015;240:1472–1479. doi: 10.1177/1535370215584939.
    1. Ray D., Mishra M., Ralph S., Read I., Davies R., Brenchley P. Association of the VEGF Gene with Proliferative Diabetic Retinopathy but Not Proteinuria in Diabetes. Diabetes. 2004;53:861–864. doi: 10.2337/diabetes.53.3.861.
    1. Inoue M., Itoh H., Ueda M., Naruko T., Kojima A., Komatsu R., Doi K., Ogawa Y., Tamura N., Takaya K., et al. Vascular endothelial growth factor (VEGF) expression in human coronary atherosclerotic lesions: Possible pathophysiological significance of VEGF in progression of atherosclerosis. Circulation. 1998;98:2108–2116. doi: 10.1161/01.CIR.98.20.2108.
    1. Fleisch M., Billinger M., Eberli F.R., Garachemani A.R., Meier B., Seiler C. Physiologically assessed coronary collateral flow and intracoronary growth factor concentrations in patients with 1- to 3-vessel coronary artery disease. Circulation. 1999;100:1945–1950. doi: 10.1161/01.CIR.100.19.1945.
    1. Celletti F.L., Waugh J.M., Amabile P.G., Brendolan A., Hilfiker P.R., Dake M.D. Vascular endothelial growth factor enhances atherosclerotic plaque progression. Nat. Med. 2001;7:425–429. doi: 10.1038/86490.
    1. Van Belle E., Maillard L., Tio F.O., Isner J.M. Accelerated endothelialization by local delivery of recombinant human vascular endothelial growth factor reduces in-stent intimal formation. Biochem. Biophys. Res. Commun. 1997;235:311–316. doi: 10.1006/bbrc.1997.6772.
    1. Van Belle E., Tio F.O., Couffinhal T., Maillard L., Passeri J., Isner J.M. Stent endothelialization: Time course, impact of local catheter delivery, feasibility of recombinant protein administration, and response to cytokine expedition. Circulation. 1997;95:438–448. doi: 10.1161/01.CIR.95.2.438.
    1. Moradzadegan A., Vaisi-Raygani A., Nikzamir A., Rahimi Z. Angiotensin converting enzyme insertion/deletion (I/D) (rs4646994) and Vegf polymorphism (+405G/C; rs2010963) in type II diabetic patients: Association with the risk of coronary artery disease. J. Renin Angiotensin Aldosterone Syst. 2015;16:672–680. doi: 10.1177/1470320313497819.
    1. Howell W.M., Ali S., Rose-Zerilli M.J., Ye S. VEGF polymorphisms and severity of atherosclerosis. J. Med. Genet. 2005;42:485–490. doi: 10.1136/jmg.2004.025734.
    1. Awata T., Kurihara S., Takata N., Neda T., Iizuka H., Ohkubo T., Osaki M., Watanabe M., Nakashima Y., Inukai K., et al. Functional VEGF C-634G polymorphism is associated with development of diabetic macular edema and correlated with macular retinal thickness in type 2 diabetes. Biochem. Biophys. Res. Commun. 2005;333:679–685. doi: 10.1016/j.bbrc.2005.05.167.
    1. Shahbazi M., Fryer A.A., Pravica V., Brogan I.J., Ramsay H.M., Hutchinson I.V., Harden P.N. Vascular endothelial growth factor gene polymorphisms are associated with acute renal allograft rejection. J. Am. Soc. Nephrol. 2002;13:260–264.
    1. Mateo I., Llorca J., Infante J., Rodríguez-Rodríguez E., Sánchez-Quintana C., Sánchez-Juan P., Berciano J., Combarros O. Case-control study of vascular endothelial growth factor (VEGF) genetic variability in Alzheimer’s disease. Neurosci. Lett. 2006;401:171–173. doi: 10.1016/j.neulet.2006.03.020.
    1. Awata T., Inoue K., Kurihara S., Ohkubo T., Watanabe M., Inukai K., Inoue I., Katayama S. A common polymorphism in the 5′-untranslated region of the VEGF gene is associated with diabetic retinopathy in type 2 diabetes. Diabetes. 2002;51:1635–1639. doi: 10.2337/diabetes.51.5.1635.
    1. Lambrechts D., Storkebaum E., Morimoto M., Del-Favero J., Desmet F., Marklund S.L., Wyns S., Thijs V., Andersson J., Van Marion I., et al. VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death. Nat. Genet. 2003;34:383–394. doi: 10.1038/ng1211.
    1. Izquierdo A.G., Crujeiras A.B., Casanueva F.F., Carreira M.C. Leptin, obesity, and leptin resistance: Where are we 25 years later? Nutrients. 2019;11:2704. doi: 10.3390/nu11112704.
    1. Korda M., Kubant R., Patton S., Malinski T. Leptin-induced endothelial dysfunction in obesity. Am. J. Physiol. Heart Circ. Physiol. 2008;295:H1514–H1521. doi: 10.1152/ajpheart.00479.2008.
    1. Gonzalez-Perez R.R., Xu Y., Guo S., Watters A., Zhou W., Leibovich S.J. Leptin upregulates VEGF in breast cancer via canonic and non-canonical signalling pathways and NFkappaB/HIF-1alpha activation. Cell. Signal. 2010;22:1350–1362. doi: 10.1016/j.cellsig.2010.05.003.
    1. Guo S., Gonzalez-Perez R.R. Notch, IL-1 and Leptin Crosstalk Outcome (NILCO) Is Critical for Leptin-Induced Proliferation, Migration and VEGF/VEGFR-2 Expression in Breast Cancer. PLoS ONE. 2011;6:e21467. doi: 10.1371/journal.pone.0021467.
    1. Yang W.H., Chang A.C., Wang S.W., Wang S.J., Chang Y.S., Chang T.M., Hsu S.K., Fong Y.C., Tang C.H. Leptin promotes VEGF-C production and induces lymphangiogenesis by suppressing miR-27b in human chondrosarcoma cells. Sci. Rep. 2016;6:28647. doi: 10.1038/srep28647.
    1. Yumuk V., Tsigos C., Fried M., Schindler K., Busetto L., Micic D., Toplak H. European Guidelines for Obesity Management in Adults. Obes. Facts. 2015;8:402–424. doi: 10.1159/000442721.
    1. Wilk B., Marek W. Ocena sztywności tętnic na podstawie analizy falkowej sygnału fotopletyzmograficznego—Pomiary Automatyka Kontrola—Tom R. 59, nr 12 (2013)—BazTech—Yadda. PAK. 2013;59:1301–1303.
    1. Friedewald W.T., Levy R.I., Fredrickson D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972;18:499–502. doi: 10.1093/clinchem/18.6.499.
    1. National Kidney Foundation K/DOQI clinical practice guidelines for chronic kidney disease: Evaluation, classification, and stratification. Am. J. Kidney Dis. 2002;39:S1–S266.
    1. Stanisz A. The Accessible Course of Statistics with Use the STATISTICA PL for Medicine Examples. StatSoft Polska; Kraków, Poland: 2007.
    1. Klisić A., Kavarić N., Bjelaković B., Jovanović M., Zvrko E., Stanišic V., Ninić A., Šcepanović A. Cardiovascular risk assessed by reynolds risk score in relation to waist circumference in apparently healthy middle-aged population in Montenegro. Acta Clin. Croat. 2018;57:22–30. doi: 10.20471/acc.2018.57.01.03.
    1. Gronewold J., Kropp R., Lehmann N., Stang A., Mahabadi A.A., Kälsch H., Weimar C., Dichgans M., Budde T., Moebus S., et al. Cardiovascular Risk and Atherosclerosis Progression in Hypertensive Persons Treated to Blood Pressure Targets. Hypertension. 2019;74:1436–1447. doi: 10.1161/HYPERTENSIONAHA.119.13827.
    1. Peters S.A.E., Singhateh Y., Mackay D., Huxley R.R., Woodward M. Total cholesterol as a risk factor for coronary heart disease and stroke in women compared with men: A systematic review and meta-analysis. Atherosclerosis. 2016;248:123–131. doi: 10.1016/j.atherosclerosis.2016.03.016.
    1. Kong A.P.S., Choi K.C., Cockram C.S., Ho C.S., Chan M.H.M., Ozaki R., Wong G.W.K., Ko G.T.C., So W.Y., Tong P.C.Y., et al. Independent associations of alanine aminotransferase (ALT) levels with cardiovascular risk factor clustering in Chinese adolescents. J. Hepatol. 2008;49:115–122. doi: 10.1016/j.jhep.2008.02.014.
    1. Sun G.Z., Wang H.Y., Chen Y.T., Sun Y.X. Serum uric acid levels positively correlates with 10-year cardiovascular risk score in the general population from China. Int. J. Cardiol. 2018;266:259. doi: 10.1016/j.ijcard.2018.01.086.
    1. Park S.M., Seo H.S., Lim H.E., Shin S.H., Park C.G., Oh D.J., Ro Y.M. Assessment of arterial stiffness index as a clinical parameter for atherosclerotic coronary artery disease. Circ. J. 2005;69:1218–1222. doi: 10.1253/circj.69.1218.
    1. Cabrera-Rego J.O., Navarro-Despaigne D., Staroushik-Morel L., Díaz-Reyes K., Lima-Martínez M.M., Iacobellis G. Association between endothelial dysfunction, epicardial fat and subclinical atherosclerosis during menopause. Clin. Investig. Arterioscler. 2018;30:21–27. doi: 10.1016/j.arteri.2017.07.006.
    1. Yuan Y., Huang F., Lin F., Lin M., Zhu P. Association of High Serum Uric Acid and Increased Arterial Stiffness is Dependent on Cardiovascular Risk Factors in Female Population. Horm. Metab. Res. 2019;51:367–374. doi: 10.1055/a-0882-7382.
    1. Elias I., Franckhauser S., Bosch F. New insights into adipose tissue VEGF-A actions in the control of obesity and insulin resistance. Adipocyte. 2013;2:109–112. doi: 10.4161/adip.22880.
    1. Larsen A.I. The pulse; from adagio to prestissimo; the prognostic importance of heart rate increase and its associations with cardiovascular risk factors. Eur. J. Prev. Cardiol. 2019 doi: 10.1177/2047487319872690.
    1. Baena-Díez J.M., Bermúdez-Chillida N., García-Lareo M., Byram A.O., Vidal-Solsona M., Vilató-García M., Gómez-Fernández C., Vásquez-Lazo J.E. Papel de la presión de pulso, presión arterial sistólica y presión arterial diastólica en la predicción del riesgo cardiovascular. Estudio de cohortes. Med. Clin. 2008;130:361–365. doi: 10.1157/13117460.
    1. Rader D.J., Hovingh G.K. HDL and cardiovascular disease. Lancet. 2014;384:618–625. doi: 10.1016/S0140-6736(14)61217-4.
    1. Mathisen U.D., Melsom T., Ingebretsen O.C., Jenssen T., Njølstad I., Solbu M.D., Toft I., Eriksen B.O. Estimated GFR associates with cardiovascular risk factors independently of measured GFR. J. Am. Soc. Nephrol. 2011;22:927–937. doi: 10.1681/ASN.2010050479.
    1. Iaresko M., Kolesnikova E. The Role of Polymorphism—634 G/C (Rs 2010963) of Vegf-A Gene in the Development of Hypertension and Obesity in Premenopausal Women. Georgian Med. News. 2016;100:33–37. doi: 10.1016/j.maturitas.2017.03.275.
    1. Lu X., Ji Y., Zhang L., Zhang Y., Zhang S., An Y., Liu P., Zheng Y. Resistance to obesity by repression of VEGF gene expression through induction of brown-like adipocyte differentiation. Endocrinology. 2012;153:3123–3132. doi: 10.1210/en.2012-1151.
    1. Jamroz-Wiśniewska A., Gertler A., Solomon G., Wood M.E., Whiteman M., Beltowski J. Leptin-induced endothelium-dependent vasorelaxation of peripheral arteries in lean and obese rats: Role of nitric oxide and hydrogen sulfide. PLoS ONE. 2014;9:e86744. doi: 10.1371/journal.pone.0086744.

Source: PubMed

3
Prenumerera