Early postoperative physical activity and function: a descriptive case series study of 53 patients after lumbar spine surgery

Rogelio A Coronado, Hiral Master, Daniel K White, Jacquelyn S Pennings, Mackenzie L Bird, Clinton J Devin, Maciej S Buchowski, Shannon L Mathis, Matthew J McGirt, Joseph S Cheng, Oran S Aaronson, Stephen T Wegener, Kristin R Archer, Rogelio A Coronado, Hiral Master, Daniel K White, Jacquelyn S Pennings, Mackenzie L Bird, Clinton J Devin, Maciej S Buchowski, Shannon L Mathis, Matthew J McGirt, Joseph S Cheng, Oran S Aaronson, Stephen T Wegener, Kristin R Archer

Abstract

Background: The purpose of this prospective case series study was to compare changes in early postoperative physical activity and physical function between 6 weeks and 3 and 6 months after lumbar spine surgery.

Methods: Fifty-three patients (mean [95% confidence interval; CI] age = 59.2 [56.2, 62.3] years, 64% female) who underwent spine surgery for a degenerative lumbar condition were assessed at 6 weeks and 3- and 6-months after surgery. The outcomes were objectively-measured physical activity (accelerometry) and patient-reported and objective physical function. Physical activity was assessed using mean steps/day and time spent in moderate to vigorous physical activity (MVPA) over a week. Physical function measures included Oswestry Disability Index (ODI), 12-item Short Form Health Survey (SF-12), Timed Up and Go (TUG), and 10-Meter Walk (10 MW). We compared changes over time in physical activity and function using generalized estimating equations with robust estimator and first-order autoregressive covariance structure. Proportion of patients who engaged in meaningful physical activity (e.g., walked at least 4400 and 6000 steps/day or engaged in at least 150 min/week in MVPA) and achieved clinically meaningful changes in physical function were compared at 3 and 6 months.

Results: After surgery, 72% of patients initiated physical therapy (mean [95%CI] sessions =8.5 [6.6, 10.4]) between 6 weeks and 3 months. Compared to 6 weeks post-surgery, no change in steps/day or time in MVPA/week was observed at 3 or 6 months. From 21 to 23% and 9 to 11% of participants walked at least 4400 and 6000 steps/day at 3 and 6 months, respectively, while none of the participants spent at least 150 min/week in MVPA at these same time points. Significant improvements were observed on ODI, SF-12, TUG and 10 MW (p < 0.05), with over 43 to 68% and 62 to 87% achieving clinically meaningful improvements on these measures at 3 and 6 months, respectively.

Conclusion: Limited improvement was observed in objectively-measured physical activity from 6 weeks to 6 months after spine surgery, despite moderate to large function gains. Early postoperative physical therapy interventions targeting physical activity may be needed.

Keywords: Physical activity; Postoperative period; Spinal fusion; Spinal stenosis; Walking.

Conflict of interest statement

KRA is a member of the editorial board of this journal. The other authors declare that they have no other competing interests.

Figures

Fig. 1
Fig. 1
Change in early postoperative patient-reported outcomes (a and b) and objective physical function (c and d). Error bars are 95% confidence intervals. * indicates significant difference from 6 weeks. ✢ indicates significant difference from 3 months

References

    1. Ciol MA, Deyo RA, Howell E, Kreif S. An assessment of surgery for spinal stenosis: time trends, geographic variations, complications, and reoperations. J Am Geriatr Soc. 1996;44(3):285–290. doi: 10.1111/j.1532-5415.1996.tb00915.x.
    1. Deyo RA, Gray DT, Kreuter W, Mirza S, Martin BI. United States trends in lumbar fusion surgery for degenerative conditions. Spine (Phila Pa 1976) 2005;30(12):1441–1445. doi: 10.1097/01.brs.0000166503.37969.8a.
    1. Deyo RA, Mirza SK, Martin BI, Kreuter W, Goodman DC, Jarvik JG. Trends, major medical complications, and charges associated with surgery for lumbar spinal stenosis in older adults. JAMA. 2010;303(13):1259–1265. doi: 10.1001/jama.2010.338.
    1. Pannell WC, Savin DD, Scott TP, Wang JC, Daubs MD. Trends in the surgical treatment of lumbar spine disease in the United States. Spine J. 2015;15(8):1719–1727. doi: 10.1016/j.spinee.2013.10.014.
    1. Knauer SR, Freburger JK, Carey TS. Chronic low back pain among older adults: a population-based perspective. J Aging Health. 2010;22(8):1213–1234. doi: 10.1177/0898264310374111.
    1. O'Lynnger TM, Zuckerman SL, Morone PJ, Dewan MC, Vasquez-Castellanos RA, Cheng JS. Trends for spine surgery for the elderly: implications for access to healthcare in North America. Neurosurgery. 2015;77(Suppl 4):S136–S141. doi: 10.1227/NEU.0000000000000945.
    1. Bae HW, Rajaee SS, Kanim LE. Nationwide trends in the surgical management of lumbar spinal stenosis. Spine (Phila Pa 1976) 2013;38(11):916–926. doi: 10.1097/BRS.0b013e3182833e7c.
    1. Rajaee SS, Bae HW, Kanim LE, Delamarter RB. Spinal fusion in the United States: analysis of trends from 1998 to 2008. Spine (Phila Pa 1976) 2012;37(1):67–76. doi: 10.1097/BRS.0b013e31820cccfb.
    1. Airaksinen O, Herno A, Turunen V, Saari T, Suomlainen O. Surgical outcome of 438 patients treated surgically for lumbar spinal stenosis. Spine (Phila Pa 1976) 1997;22(19):2278–2282. doi: 10.1097/00007632-199710010-00016.
    1. Jansson KA, Nemeth G, Granath F, Jonsson B, Blomqvist P. Health-related quality of life (EQ-5D) before and one year after surgery for lumbar spinal stenosis. J Bone Joint Surg Brit Vol. 2009;91(2):210–216. doi: 10.1302/0301-620X.91B2.21119.
    1. Jonsson B, Annertz M, Sjoberg C, Stromqvist B. A prospective and consecutive study of surgically treated lumbar spinal stenosis. Part II: Five-year follow-up by an independent observer. Spine (Phila Pa 1976) 1997;22(24):2938–2944. doi: 10.1097/00007632-199712150-00017.
    1. Mannion AF, Denzler R, Dvorak J, Grob D. Five-year outcome of surgical decompression of the lumbar spine without fusion. Eur Spine J. 2010;19(11):1883–1891. doi: 10.1007/s00586-010-1535-2.
    1. DeVine J, Norvell DC, Ecker E, Fourney DR, Vaccaro A, Wang J, et al. Evaluating the correlation and responsiveness of patient-reported pain with function and quality-of-life outcomes after spine surgery. Spine (Phila Pa 1976) 2011;36(21 Suppl):S69–S74. doi: 10.1097/BRS.0b013e31822ef6de.
    1. Alcock L, O'Brien TD, Vanicek N. Age-related changes in physical functioning: correlates between objective and self-reported outcomes. Physiotherapy. 2015;101(2):204–213. doi: 10.1016/j.physio.2014.09.001.
    1. Fleg JL, Morrell CH, Bos AG, Brant LJ, Talbot LA, Wright JG, et al. Accelerated longitudinal decline of aerobic capacity in healthy older adults. Circulation. 2005;112(5):674–682. doi: 10.1161/CIRCULATIONAHA.105.545459.
    1. Rao PJ, Phan K, Maharaj MM, Pelletier MH, Walsh WR, Mobbs RJ. Accelerometers for objective evaluation of physical activity following spine surgery. J Clin Neurosci. 2016;26:14–18. doi: 10.1016/j.jocn.2015.05.064.
    1. Chou WT, Tomata Y, Watanabe T, Sugawara Y, Kakizaki M, Tsuji I. Relationships between changes in time spent walking since middle age and incident functional disability. Prev Med. 2014;59:68–72. doi: 10.1016/j.ypmed.2013.11.019.
    1. Christensen U, Stovring N, Schultz-Larsen K, Schroll M, Avlund K. Functional ability at age 75: is there an impact of physical inactivity from middle age to early old age? Scand J Med Sci Sports. 2006;16(4):245–251. doi: 10.1111/j.1600-0838.2005.00459.x.
    1. Paterson DH, Warburton DE. Physical activity and functional limitations in older adults: a systematic review related to Canada's physical activity guidelines. Int J Behav Nutr Phys Act. 2010;7:38. doi: 10.1186/1479-5868-7-38.
    1. Pinto RZ, Ferreira PH, Kongsted A, Ferreira ML, Maher CG, Kent P. Self-reported moderate-to-vigorous leisure time physical activity predicts less pain and disability over 12 months in chronic and persistent low back pain. Eur J Pain. 2014;18(8):1190–1198. doi: 10.1002/j.1532-2149.2014.00468.x.
    1. Smuck M, Muaremi A, Zheng P, Norden J, Sinha A, Hu R, et al. Objective measurement of function following lumbar spinal stenosis decompression reveals improved functional capacity with stagnant real-life physical activity. Spine J. 2018;18(1):15–21. doi: 10.1016/j.spinee.2017.08.262.
    1. Schulte TL, Schubert T, Winter C, Brandes M, Hackenberg L, Wassmann H, et al. Step activity monitoring in lumbar stenosis patients undergoing decompressive surgery. Eur Spine J. 2010;19(11):1855–1864. doi: 10.1007/s00586-010-1324-y.
    1. Mancuso CA, Duculan R, Girardi FP. Healthy physical activity levels below recommended thresholds two years after lumbar spine surgery. Spine (Phila Pa 1976) 2017;42(4):E241–E2E7. doi: 10.1097/BRS.0000000000001757.
    1. Gilmore SJ, Hahne AJ, Davidson M, McClelland JA. Predictors of substantial improvement in physical function six months after lumbar surgery: is early post-operative walking important? A prospective cohort study. BMC Musculoskelet Disord. 2019;20(1):418. doi: 10.1186/s12891-019-2806-7.
    1. Rushton A, Wright C, Heap A, White L, Eveleigh G, Heneghan N. Survey of current physiotherapy practice for patients undergoing lumbar spinal fusion in the United Kingdom. Spine (Phila Pa 1976) 2014;39(23):E1380–E1387. doi: 10.1097/BRS.0000000000000573.
    1. McGregor AH, Probyn K, Cro S, Dore CJ, Burton AK, Balague F, et al. Rehabilitation following surgery for lumbar spinal stenosis. A cochrane review. Spine (Phila Pa 1976) 2014;39(13):1044–1054. doi: 10.1097/BRS.0000000000000355.
    1. Rushton A, Eveleigh G, Petherick EJ, Heneghan N, Bennett R, James G, et al. Physiotherapy rehabilitation following lumbar spinal fusion: a systematic review and meta-analysis of randomised controlled trials. BMJ Open. 2012;2(4)e000829.
    1. Rushton A, Wright C, Goodwin P, Calvert M, Freemantle N. Physiotherapy rehabilitation post first lumbar discectomy: a systematic review and meta-analysis of randomized controlled trials. Spine (Phila Pa 1976) 2011;36(14):E961–E972. doi: 10.1097/BRS.0b013e3181f0e8f8.
    1. Madera M, Brady J, Deily S, McGinty T, Moroz L, Singh D, et al. The role of physical therapy and rehabilitation after lumbar fusion surgery for degenerative disease: a systematic review. J Neurosurg Spine. 2017;26(6):694–704. doi: 10.3171/2016.10.SPINE16627.
    1. Gilmore SJ, Hahne AJ, Davidson M, McClelland JA. Physical activity patterns of patients immediately after lumbar surgery. Disabil Rehabil. 2019;42(26):1–7.
    1. McGirt MJ, Bydon M, Archer KR, Devin CJ, Chotai S, Parker SL, et al. An analysis from the quality outcomes database, part 1. Disability, quality of life, and pain outcomes following lumbar spine surgery: predicting likely individual patient outcomes for shared decision-making. J Neurosurg Spine. 2017;27(4):357–369. doi: 10.3171/2016.11.SPINE16526.
    1. Chen KY, Bassett DR., Jr The technology of accelerometry-based activity monitors: current and future. Med Sci Sports Exerc. 2005;37(11 Suppl):S490–S500. doi: 10.1249/01.mss.0000185571.49104.82.
    1. McClain JJ, Sisson SB, Tudor-Locke C. Actigraph accelerometer interinstrument reliability during free-living in adults. Med Sci Sports Exerc. 2007;39(9):1509–1514. doi: 10.1249/mss.0b013e3180dc9954.
    1. Ozemek C, Kirschner MM, Wilkerson BS, Byun W, Kaminsky LA. Intermonitor reliability of the GT3X+ accelerometer at hip, wrist and ankle sites during activities of daily living. Physiol Meas. 2014;35(2):129–138. doi: 10.1088/0967-3334/35/2/129.
    1. Sirard JR, Melanson EL, Li L, Freedson PS. Field evaluation of the computer science and applications, Inc. physical activity monitor. Med Sci Sports Exerc. 2000;32(3):695–700. doi: 10.1097/00005768-200003000-00022.
    1. Song J, Semanik P, Sharma L, Chang RW, Hochberg MC, Mysiw WJ, et al. Assessing physical activity in persons with knee osteoarthritis using accelerometers: data from the osteoarthritis initiative. Arthritis Care Res. 2010;62(12):1724–1732. doi: 10.1002/acr.20305.
    1. Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181–188. doi: 10.1249/mss.0b013e31815a51b3.
    1. King WC, Li J, Leishear K, Mitchell JE, Belle SH. Determining activity monitor wear time: an influential decision rule. J Phys Act Health. 2011;8(4):566–580. doi: 10.1123/jpah.8.4.566.
    1. Mudge S, Taylor D, Chang O, Wong R. Test-retest reliability of the StepWatch activity monitor outputs in healthy adults. J Phys Act Health. 2010;7(5):671–676. doi: 10.1123/jpah.7.5.671.
    1. Trost SG, McIver KL, Pate RR. Conducting accelerometer-based activity assessments in field-based research. Med Sci Sports Exerc. 2005;37(11 Suppl):S531–S543. doi: 10.1249/01.mss.0000185657.86065.98.
    1. Lee IM, Shiroma EJ, Kamada M, Bassett DR, Matthews CE, Buring JE. Association of step volume and intensity with all-cause mortality in older women. Jama Intern Med. 2019;179(8):1105-12.
    1. White DK, Tudor-Locke C, Zhang Y, Fielding R, LaValley M, Felson DT, et al. Daily walking and the risk of incident functional limitation in knee osteoarthritis: an observational study. Arthritis Care Res. 2014;66(9):1328–1336. doi: 10.1002/acr.22362.
    1. Piercy KL, Troiano RP, Ballard RM, Carlson SA, Fulton JE, Galuska DA, et al. The physical activity guidelines for Americans. JAMA. 2018;320(19):2020–2028. doi: 10.1001/jama.2018.14854.
    1. Fairbank JC, Pynsent PB. The Oswestry disability index. Spine (Phila Pa 1976) 2000;25(22):2940–2952. doi: 10.1097/00007632-200011150-00017.
    1. Fritz JM, Irrgang JJ. A comparison of a modified Oswestry Low Back pain disability questionnaire and the Quebec Back pain disability scale. Phys Ther. 2001;81(2):776–788. doi: 10.1093/ptj/81.2.776.
    1. Asher AM, Oleisky ER, Pennings JS, Khan I, Sivaganesan A, Devin CJ, et al. Measuring clinically relevant improvement after lumbar spine surgery: is it time for something new? Spine J. 2020;20(6):847–856. doi: 10.1016/j.spinee.2020.01.010.
    1. Cheak-Zamora NC, Wyrwich KW, McBride TD. Reliability and validity of the SF-12v2 in the medical expenditure panel survey. Qual Life Res. 2009;18(6):727–735. doi: 10.1007/s11136-009-9483-1.
    1. Lee CE, Browell LM, Jones DL. Measuring health in patients with cervical and lumbosacral spinal disorders: is the 12-item short-form health survey a valid alternative for the 36-item short-form health survey? Arch Phys Med Rehabil. 2008;89(5):829–833. doi: 10.1016/j.apmr.2007.09.056.
    1. Diaz-Arribas MJ, Fernandez-Serrano M, Royuela A, Kovacs FM, Gallego-Izquierdo T, Ramos-Sanchez M, et al. Minimal clinically important difference in quality of life for patients with Low Back pain. Spine (Phila Pa 1976) 2017;42(24):1908–1916. doi: 10.1097/BRS.0000000000002298.
    1. Steffen TM, Hacker TA, Mollinger L. Age- and gender-related test performance in community-dwelling elderly people: six-minute walk test, berg balance scale, timed up & go test, and gait speeds. Phys Ther. 2002;82(2):128–137. doi: 10.1093/ptj/82.2.128.
    1. Lin MR, Hwang HF, Hu MH, Wu HD, Wang YW, Huang FC. Psychometric comparisons of the timed up and go, one-leg stand, functional reach, and Tinetti balance measures in community-dwelling older people. J Am Geriatr Soc. 2004;52(8):1343–1348. doi: 10.1111/j.1532-5415.2004.52366.x.
    1. Jakobsson M, Brisby H, Gutke A, Lundberg M, Smeets R. One-minute stair climbing, 50-foot walk, and timed up-and-go were responsive measures for patients with chronic low back pain undergoing lumbar fusion surgery. BMC Musculoskelet Disord. 2019;20(1):137. doi: 10.1186/s12891-019-2512-5.
    1. Wright AA, Cook CE, Baxter GD, Dockerty JD, Abbott JH. A comparison of 3 methodological approaches to defining major clinically important improvement of 4 performance measures in patients with hip osteoarthritis. J Orthop Sport Phys. 2011;41(5):319–327. doi: 10.2519/jospt.2011.3515.
    1. Bohannon RW. Comfortable and maximum walking speed of adults aged 20-79 years: reference values and determinants. Age Ageing. 1997;26(1):15–19. doi: 10.1093/ageing/26.1.15.
    1. Wolf SL, Catlin PA, Gage K, Gurucharri K, Robertson R, Stephen K. Establishing the reliability and validity of measurements of walking time using the Emory functional ambulation profile. Phys Ther. 1999;79(12):1122–1133. doi: 10.1093/ptj/79.12.1122.
    1. Hardy SE, Perera S, Roumani YF, Chandler JM, Studenski SA. Improvement in usual gait speed predicts better survival in older adults. J Am Geriatr Soc. 2007;55(11):1727–1734. doi: 10.1111/j.1532-5415.2007.01413.x.
    1. Marks R. Reliability and validity of self-paced walking time measures for knee osteoarthritis. Arthritis Care Res. 1994;7(1):50–53. doi: 10.1002/art.1790070111.
    1. Kwon S, Perera S, Pahor M, Katula J, King A, Groessl E, et al. What is a meaningful change in physical performance? Findings from a clinical trial in older adults (the LIFE-P study) J Nutr Health Aging. 2009;13(6):538–544. doi: 10.1007/s12603-009-0104-z.
    1. Morris TP, White IR, Royston P. Tuning multiple imputation by predictive mean matching and local residual draws. BMC Med Res Methodol. 2014;14(1):75. doi: 10.1186/1471-2288-14-75.
    1. Inoue M, Orita S, Inage K, Suzuki M, Fujimoto K, Shiga Y, et al. Objective evaluation of postoperative changes in real-life activity levels in the postoperative course of lumbar spinal surgery using wearable trackers. BMC Musculoskelet Disord. 2020;21(1):72. doi: 10.1186/s12891-020-3102-2.
    1. Rolving N, Obling KH, Christensen FB, Fonager K. Physical activity level, leisure activities and related quality of life 1 year after lumbar decompression or total hip arthroplasty. Eur Spine J. 2013;22(4):802–808. doi: 10.1007/s00586-012-2535-1.
    1. Prince SA, Adamo KB, Hamel ME, Hardt J, Connor Gorber S, Tremblay M. A comparison of direct versus self-report measures for assessing physical activity in adults: a systematic review. Int J Behav Nutr Phys Act. 2008;5:56. doi: 10.1186/1479-5868-5-56.
    1. Mandigout S, Lacroix J, Perrochon A, Svoboda Z, Aubourg T, Vuillerme NJFiM. Comparison of step count assessed using wrist-and hip-worn Actigraph GT3X in free-living conditions in young and older adults. 2019;6.
    1. Webber SC, St. John PD. Comparison of ActiGraph GT3X+ and StepWatch step count accuracy in geriatric rehabilitation patients. J Aging Phys Act. 2016;24(3):451–458. doi: 10.1123/japa.2015-0234.
    1. de Groot IB, Bussmann HJ, Stam HJ, Verhaar JA. Small increase of actual physical activity 6 months after total hip or knee arthroplasty. Clin Orthop Relat Res. 2008;466(9):2201–2208. doi: 10.1007/s11999-008-0315-3.
    1. Harding P, Holland AE, Delany C, Hinman RS. Do activity levels increase after total hip and knee arthroplasty? Clin Orthop Relat Res. 2014;472(5):1502–1511. doi: 10.1007/s11999-013-3427-3.
    1. Phillips FM, Slosar PJ, Youssef JA, Andersson G, Papatheofanis F. Lumbar spine fusion for chronic low back pain due to degenerative disc disease: a systematic review. Spine (Phila Pa 1976) 2013;38(7):E409–E422. doi: 10.1097/BRS.0b013e3182877f11.
    1. Archer KR, Devin CJ, Vanston SW, Koyama T, Phillips SE, Mathis SL, et al. Cognitive-behavioral-based physical therapy for patients with chronic pain undergoing lumbar spine surgery: a randomized controlled trial. J Pain. 2016;17(1):76–89. doi: 10.1016/j.jpain.2015.09.013.
    1. Kulig K, Beneck GJ, Selkowitz DM, Popovich JM, Jr, Ge TT, Flanagan SP, et al. An intensive, progressive exercise program reduces disability and improves functional performance in patients after single-level lumbar microdiskectomy. Phys Ther. 2009;89(11):1145–1157. doi: 10.2522/ptj.20080052.
    1. Low M, Burgess LC, Wainwright TW. A critical analysis of the exercise prescription and return to activity advice that is provided in patient information leaflets following lumbar spine surgery. Medicina (Kaunas). 2019;55(7):347.
    1. Janssen ERC, Scheijen EEM, van Meeteren NLU, de Bie RA, Lenssen AF, Willems PC, et al. Determining clinical practice of expert physiotherapy for patients undergoing lumbar spinal fusion: a cross-sectional survey study. Eur Spine J. 2016;25(5):1533–1541. doi: 10.1007/s00586-016-4433-4.
    1. Bock C, Jarczok MN, Litaker D. Community-based efforts to promote physical activity: a systematic review of interventions considering mode of delivery, study quality and population subgroups. J Sci Med Sport. 2014;17(3):276–282. doi: 10.1016/j.jsams.2013.04.009.
    1. Capalb DJ, O'Halloran P, Liamputtong P. Why older people engage in physical activity: an exploratory study of participants in a community-based walking program. Aust J Prim Health. 2014;20(1):74–78. doi: 10.1071/PY12090.
    1. Fitzpatrick SE, Reddy S, Lommel TS, Fischer JG, Speer EM, Stephens H, et al. Physical activity and physical function improved following a community-based intervention in older adults in Georgia senior centers. J Nutr Elder. 2008;27(1–2):135–154. doi: 10.1080/01639360802060223.

Source: PubMed

3
Prenumerera