Diabetes and the brain: oxidative stress, inflammation, and autophagy

María Muriach, Miguel Flores-Bellver, Francisco J Romero, Jorge M Barcia, María Muriach, Miguel Flores-Bellver, Francisco J Romero, Jorge M Barcia

Abstract

Diabetes mellitus is a common metabolic disorder associated with chronic complications including a state of mild to moderate cognitive impairment, in particular psychomotor slowing and reduced mental flexibility, not attributable to other causes, and shares many symptoms that are best described as accelerated brain ageing. A common theory for aging and for the pathogenesis of this cerebral dysfunctioning in diabetes relates cell death to oxidative stress in strong association to inflammation, and in fact nuclear factor κB (NFκB), a master regulator of inflammation and also a sensor of oxidative stress, has a strategic position at the crossroad between oxidative stress and inflammation. Moreover, metabolic inflammation is, in turn, related to the induction of various intracellular stresses such as mitochondrial oxidative stress, endoplasmic reticulum (ER) stress, and autophagy defect. In parallel, blockade of autophagy can relate to proinflammatory signaling via oxidative stress pathway and NFκB-mediated inflammation.

Figures

Figure 1
Figure 1
Scheme summarizing the involvement of oxidative stress (mitochondrial dysfunction and ER stress), inflammation, and autophagy in the diabetic brain. GSH: reduced glutathione; GSSG: glutathione disulfide; SOD: superoxide dismutase; NADP+: nicotinamide adenine dinucleotide phosphate oxidized; NADPH: nicotinamide adenine dinucleotide phosphate reduced; NAD+: nicotinamide adenine dinucleotide oxidized; NADH: nicotinamide adenine dinucleotide reduced; CAT: catalase; IκBa: nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor, alpha; NFκB: nuclear factor kappa-light-chain-enhancer of activated B cells; ER: endoplasmic reticulum; GLU: glucose; INS: insulin; P: phosphate; MDA: malondialdehyde; ATP: adenosine triphosphate; ETC: electron transport chain; ROS: reactive oxygen species; MnSOD: manganese superoxide dismutase; GSR: glutathione reductase; CHOP: C/EBP Homology Protein; TNFα: tumor necrosis factor alpha; NOS: nitric oxide synthases.

References

    1. Miles WR, Root HF. Root HF Psychologic tests applied in diabetic patients. Archives of Internal Medicine. 1922;30:767–770.
    1. Biessels GJ, Kappelle AC, Bravenboer B, Erkelens DW, Gispen WH. Cerebral function in diabetes mellitus. Diabetologia. 1994;37(7):643–650.
    1. Sinclair AJ, Girling AJ, Bayer AJ. Cognitive dysfunction in older subjects with diabetes mellitus: impact on diabetes self-management and use of care services. Diabetes Research and Clinical Practice. 2000;50(3):203–212.
    1. De Jong RN. The nervous system complications of diabetes mellitus, with special reference to cerebrovascular changes. Journal of Nervous & Mental Disease. 1950;111(3):181–206.
    1. Mijnhout GS, Scheltens P, Diamant M, et al. Diabetic encephalopathy: a concept in need of a definition. Diabetologia. 2006;49(6):1447–1448.
    1. Biessels GJ, Staekenborg S, Brunner E, Brayne C, Scheltens P. Risk of dementia in diabetes mellitus: a systematic review. The Lancet Neurology. 2006;5(1):64–74.
    1. Cheng G, Huang C, Deng H, Wang H. Diabetes as a risk factor for dementia and mild cognitive impairment: a meta-analysis of longitudinal studies. Internal Medicine Journal. 2012;42(5):484–491.
    1. Brands MW, Bell TD, Gibson B. Nitric oxide may prevent hypertension early in diabetes by counteracting renal actions of superoxide. Hypertension. 2004;43(1):57–63.
    1. Biessels GJ, Van der Heide LP, Kamal A, Bleys RL, Gispen WH. Ageing and diabetes: implications for brain function. European Journal of Pharmacology. 2002;441(1-2):1–14.
    1. Beckman KB, Ames BN. The free radical theory of aging matures. Physiological Reviews. 1998;78(2):547–581.
    1. Bonnefont-Rousselot D. Glucose and reactive oxygen species. Current Opinion in Clinical Nutrition and Metabolic Care. 2002;5(5):561–568.
    1. Jackson GR, Werrbach-Perez K, Pan Z, Sampath D, Perez-Polo J. Neurotrophin regulation of energy homeostasis in the central nervous system. Developmental Neuroscience. 1994;16(5-6):285–290.
    1. Dugan LL, Sensi SL, Canzoniero LMT, et al. Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-D-aspartate. The Journal of Neuroscience. 1995;15(10):6377–6388.
    1. Yuan J, Yankner BA. Apoptosis in the nervous system. Nature. 2000;407(6805):802–809.
    1. Bala K, Tripathy BC, Sharma D. Neuroprotective and anti-ageing effects of curcumin in aged rat brain regions. Biogerontology. 2006;7(2):81–89.
    1. Bondereff W. Histophysiology of the aging nervous system. Advances in Gerontological Research. 1964;18:1–22.
    1. Wright BE, Davison PF. Mechanisms of development and aging. Mechanisms of Ageing and Development. 1980;12(3):213–219.
    1. Baquer NZ, Hothersall JS, McLean P, Greenbaum AL. Effect of aging on soluble and membrane bound enzymes in rat brain. Neurochemistry International. 1990;16(3):369–375.
    1. Sinha N, Taha A, Baquer NZ, Sharma D. Exogenous administration of dehydroepiendrosterone attenuates loss of superoxide dismuatse activity in the brain of old rats. Indian Journal of Biochemistry and Biophysics. 2008;45(1):57–60.
    1. Suresh Kumar JS, Menon VP. Effect of diabetes on levels of lipid peroxides and glycolipids in rat brain. Metabolism. 1993;42(11):1435–1439.
    1. Makar TK, Rimpel-Lamhaouar K, Abraham DG, Gokhale VS, Cooper AJL. Antioxidant defense systems in the brains of type II diabetic mice. Journal of Neurochemistry. 1995;65(1):287–291.
    1. Miranda M, Muriach M, Almansa I, et al. CR-6 protects glutathione peroxidase activity in experimental diabetes. Free Radical Biology and Medicine. 2007;43(11):1494–1498.
    1. Alvarez-Nölting R, Arnal E, Barcia JM, Miranda M, Romero FJ. Protection by DHA of early hippocampal changes in diabetes: possible role of CREB and NF-κB. Neurochemical Research. 2012;37(1):105–115.
    1. Reagan LP, Magariños AM, Yee DK, et al. Oxidative stress and HNE conjugation of GLUT3 are increased in the hippocampus of diabetic rats subjected to stress. Brain Research. 2000;862(1-2):292–300.
    1. Grillo CA, Piroli GG, Rosell DR, Hoskin EK, McEwen BS, Reagan LP. Region specific increases in oxidative stress and superoxide dismutase in the hippocampus of diabetic rats subjected to stress. Neuroscience. 2003;121(1):133–140.
    1. Ulusu NN, Sahilli M, Avci A, et al. Pentose phosphate pathway, glutathione -dependent enzymes and antioxidant defense during oxidative stress in diabetic rodent brain and peripheral organs: effects of stobadine and vitamin E. Neurochemical Research. 2003;28(6):815–823.
    1. Muriach M, Bosch-Morell F, Alexander G, et al. Lutein effect on retina and hippocampus of diabetic mice. Free Radical Biology and Medicine. 2006;41(6):979–988.
    1. Preet A, Gupta BL, Siddiqui MR, Yadava PK, Baquer NZ. Restoration of ultrastructural and biochemical changes in alloxan-induced diabetic rat sciatic nerve on treatment with Na3VO4 and Trigonella: a promising antidiabetic agent. Molecular and Cellular Biochemistry. 2005;278(1-2):21–31.
    1. Merad-Boudia M, Nicole A, Santiard-Baron D, Saillé C, Ceballos-Picot I. Mitochondrial impairment as an early event in the process of apoptosis induced by glutathione depletion in neuronal cells: relevance to Parkinson's disease. Biochemical Pharmacology. 1998;56(5):645–655.
    1. Cui X, Zuo P, Zhang Q, et al. Chronic systemic D-galactose exposure induces memory loss, neurodegeneration, and oxidative damage in mice: protective effects of R-alpha-lipoic acid. Journal of Neuroscience Research. 2006;84(3):647–654.
    1. Moreira PI, Cardoso SM, Pereira CM, Santos MS, Oliveira CR. Mitochondria as a therapeutic target in Alzheimer's disease and diabetes. CNS and Neurological Disorders—Drug Targets. 2009;8(6):492–511.
    1. Cardoso S, Santos RX, Correia SC, et al. Insulin-induced recurrent hypoglycemia exacerbates diabetic brain mitochondrial dysfunction and oxidative imbalance. Neurobiology of Disease. 2013;49(1):1–12.
    1. Zhao WQ, Alkon DL. Role of insulin and insulin receptor in learning and memory. Molecular and Cellular Endocrinology. 2001;177(1-2):125–134.
    1. Xu Q-, Li X-, Kotecha SA, Cheng C, Sun HS, Zochodne DW. Insulin as an in vivo growth factor. Experimental Neurology. 2004;188(1):43–51.
    1. Belfiore A, Frasca F, Pandini G, Sciacca L, Vigneri R. Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocrine Reviews. 2009;30(6):586–623.
    1. Stiles BL. PI-3-K and AKT: onto the mitochondria. Advanced Drug Delivery Reviews. 2009;61(14):1276–1282.
    1. Cheng Z, Tseng Y, White MF. Insulin signaling meets mitochondria in metabolism. Trends in Endocrinology and Metabolism. 2010;21(10):589–598.
    1. Fisher-Wellman KH, Neufer PD. Linking mitochondrial bioenergetics to insulin resistance via redox biology. Trends in Endocrinology and Metabolism. 2012;23(3):142–153.
    1. Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science. 2005;307(5708):384–387.
    1. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813–820.
    1. Anderson EJ, Lustig ME, Boyle KE, et al. Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. Journal of Clinical Investigation. 2009;119(3):573–581.
    1. Hoehn KL, Salmon AB, Hohnen-Behrens C, et al. Insulin resistance is a cellular antioxidant defense mechanism. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(42):17787–17792.
    1. Arnal E, Miranda M, Barcia J, Bosch-Morell F, Romero FJ. Lutein and docosahexaenoic acid prevent cortex lipid peroxidation in streptozotocin-induced diabetic rat cerebral cortex. Neuroscience. 2010;166(1):271–278.
    1. Je HD, Shin CY, Park HS, Huh IH, Sohn UD. The comparison of vitamin C and vitamin E on the protein oxidation of diabetic rats. Journal of Autonomic Pharmacology. 2001;21(5):231–236.
    1. Hasanain B, Mooradian AD. Antioxidant vitamins and their influence in diabetes mellitus. Current Diabetes Reports. 2002;2(5):448–456.
    1. Goldszmid RS, Trinchieri G. The price of immunity. Nature Immunology. 2012;13(10):932–938.
    1. Medzhitov R, Horng T. Transcriptional control of the inflammatory response. Nature Reviews Immunology. 2009;9(10):692–703.
    1. Okin D, Medzhitov R. Evolution of inflammatory diseases. Current Biology. 2012;22(17):R733–R740.
    1. Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiological Reviews. 2007;87(1):315–424.
    1. Meier B, Radeke HH, Selle S, et al. Human fibroblasts release reactive oxygen species in response to interleukin-1 or tumour necrosis factor-α. Biochemical Journal. 1989;263(2):539–545.
    1. Meier B, Radeke HH, Selle S, et al. Human fibroblasts release reactive oxygen species in response to treatment with synovial fluids from patients suffering from arthritis. Free Radical Research Communications. 1990;8(3):149–160.
    1. Li H, Horke S, Förstermann U. Oxidative stress in vascular disease and its pharmacological prevention. Trends in Pharmacological Sciences. 2013;34(6):313–319.
    1. Roberts RA, Smith RA, Safe S, Szabo C, Tjalkens RB, Robertson FM. Toxicological and pathophysiological roles of reactive oxygen and nitrogen species. Toxicology. 2010;276:85–94.
    1. Rochette L, Lorin J, Zeller M, et al. Nitric oxide synthase inhibition and oxidative stress in cardiovascular diseases: possible therapeutic targets? Pharmacology and Therapeutics. 2013;140(3):239–257.
    1. Spychalowicz A, Wilk G, Śliwa T, Ludew D, Guzik TJ. Novel therapeutic approaches in limiting oxidative stress and inflammation. Current Pharmaceutical Biotechnology. 2012;13(13):2456–2466.
    1. Meffert MK, Baltimore D. Physiological functions for brain NF-kappaB. Trends in Neurosciences. 2005;28(1):37–43.
    1. Vaughan S, Jat PS. Deciphering the role of nuclear factor-κB in cellular senescence. Aging. 2011;3(10):913–919.
    1. Mohamed AK, Bierhaus A, Schiekofer S, Tritschler H, Ziegler R, Nawroth PP. The role of oxidative stress and NF-κB activation in late diabetic complications. BioFactors. 1999;10(2-3):157–167.
    1. Patel S, Santani D. Role of NF-κB in the pathogenesis of diabetes and its associated complications. Pharmacological Reports. 2009;61(4):595–603.
    1. Mattson MP, Camandola S. NF-κB in neuronal plasticity and neurodegenerative disorders. Journal of Clinical Investigation. 2001;107(3):247–254.
    1. Vincent AM, Brownlee M, Russell JW. Oxidative stress and programmed cell death in diabetic neuropathy. Annals of the New York Academy of Sciences. 2002;959:368–383.
    1. Cai D, Liu T. Inflammatory cause of metabolic syndrome via brain stress and NF-κB. Aging. 2012;4(2):98–115.
    1. Pahl HL. Activators and target genes of Rel /NF-κB transcription factors. Oncogene. 1999;18:6853–6866.
    1. Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Research. 2011;21:103–115.
    1. Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. The Lancet. 2005;365(9468):1415–1428.
    1. Kahn BB, Flier JS. Obesity and insulin resistance. The Journal of Clinical Investigation. 2000;106:473–481.
    1. Schenk S, Saberi M, Olefsky JM. Insulin sensitivity: modulation by nutrients and inflammation. The Journal of Clinical Investigation. 2008;118(9):2992–3002.
    1. Zhang X, Zhang G, Zhang H, Karin M, Bai H, Cai D. Hypothalamic IKKbeta /NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell. 2008;135:61–73.
    1. Shoelson SE, Goldfine AB. Getting away from glucose: fanning the flames of obesity-induced inflammation. Nature Medicine. 2009;15(4):373–374.
    1. Lam TKT, Schwartz GJ, Rossetti L. Hypothalamic sensing of fatty acids. Nature Neuroscience. 2005;8(5):579–584.
    1. Meister B. Neurotransmitters in key neurons of the hypothalamus that regulate feeding behavior and body weight. Physiology & Behavior. 2007;92(1-2):263–271.
    1. Sonoda J, Pei L, Evans RM. Nuclear receptors: decoding metabolic disease. The FEBS Letters. 2008;582(1):2–9.
    1. Cai D. NFkappaB-mediated metabolic inflammation in peripheral tissues versus central nervous system. Cell Cycle. 2009;8:2542–2548.
    1. Lumeng CN, Saltiel AR. Inflammatory links between obesity and metabolic disease. Journal of Clinical Investigation. 2011;121(6):2111–2117.
    1. De Souza CT, Araujo EP, Bordin S, et al. Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology. 2005;146(10):4192–4199.
    1. Belgardt BF, Mauer J, Wunderlich FT, et al. Hypothalamic and pituitary c-Jun N-terminal kinase 1 signaling coordinately regulates glucose metabolism. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(13):6028–6033.
    1. Petersen KF, Befroy D, Dufour S, et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science. 2003;300(5622):1140–1142.
    1. Jung HS, Lee MS. Role of autophagy in diabetes and mitochondria. Annals of the New York Academy of Sciences. 2010;1201:79–83.
    1. Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443(7113):787–795.
    1. Brown MK, Naidoo N. The endoplasmic reticulum stress response in aging and age-related diseases. Frontiers in Physiology. 2012;3, article 263
    1. Cadenas E, Davies KJA. Mitochondrial free radical generation, oxidative stress, and aging. Free Radical Biology and Medicine. 2000;29(3-4):222–230.
    1. Özcan U, Yilmaz E, Özcan L, et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science. 2006;313(5790):1137–1140.
    1. Hotamisligil GS. Endoplasmic reticulum stress and the inflammatory bas is of metabolic disease. Cell. 2010;140(6):900–917.
    1. Tabas I, Ron D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nature Cell Biology. 2011;13(3):184–190.
    1. Meng Y, Yong Y, Yang G, et al. Autophagy alleviates neurodegeneration caused by mild impairment of oxidative metabolism. Journal of Neurochemistry. 2013;126(6):805–818.
    1. Rao RV, Ellerby HM, Bredesen DE. Coupling endoplasmic reticulum stress to the cell death program. Cell Death and Differentiation. 2004;11(4):372–380.
    1. Purkayastha S, Zhang G, Cai D. Uncoupling the mechanisms of obesity and hypertension by targeting hypothalamic IKK-beta and NF-kappaB. Nature Medicine. 2011;17:883–887.
    1. Cullinan SB, Diehl JA. Coordination of ER and oxidative stress signaling: the PERK/Nrf2 signaling pathway. International Journal of Biochemistry and Cell Biology. 2006;38(3):317–332.
    1. Zhang X, Xu L, He D, Ling S. Endoplasmic reticulum stress-mediated hippocampal neuron apoptosis involved in diabetic cognitive impairment. BioMed Research International. 2013;2013:9 pages.924327
    1. Bernales S, Schuck S, Walter P. ER-phagy: selective autophagy of the endoplasmic reticulum. Autophagy. 2007;3(3):285–287.
    1. Rodriguez-Enriquez S, Kim I, Currin RT, Lemasters JJ. Tracker dyes to probe mitochondrial autophagy (mitophagy) in rat hepatocytes. Autophagy. 2006;2(1):39–46.
    1. Wang P, Miao C. Autophagy in the disorders of central nervous system: vital and/or fatal? CNS Neuroscience and Therapeutics. 2012;18(12):955–956.
    1. Wei K, Wang P, Miao C. A double-edged sword with therapeutic potential: an updated role of autophagy in ischemic cerebral injury. CNS Neuroscience and Therapeutics. 2012;18(11):879–886.
    1. Singh R, Kaushik S, Wang Y, et al. Autophagy regulates lipid metabolism. Nature. 2009;458(7242):1131–1135.
    1. Donohue TM., Jr. Autophagy and ethanol-induced liver injury. World Journal of Gastroenterology. 2009;15(10):1178–1185.
    1. Gonzalez CD, Lee M, Marchetti P, et al. The emerging role of autophagy in the pathophysiology of diabetes mellitus. Autophagy. 2011;7(1):2–11.
    1. Butler D, Bahr BA. Oxidative stress and lysosomes: CNS-related consequences and implications for lysosomal enhancement strategies and induction of autophagy. Antioxidants and Redox Signaling. 2006;8(1-2):185–196.
    1. Matus S, Lisbona F, Torres M, León C, Thielen P, Hetz C. The stress rheostat: an interplay between the unfolded protein response (UPR) and autophagy in neurodegeneration. Current Molecular Medicine. 2008;8(3):157–172.
    1. Bergamini E, Cavallini G, Donati A, Gori Z. The role of macroautophagy in the ageing process, anti-ageing intervention and age-associated diseases. International Journal of Biochemistry and Cell Biology. 2004;36(12):2392–2404.
    1. Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469:221–225.
    1. Fujishima Y, Nishiumi S, Masuda A, et al. Autophagy in the intestinal epithelium reduces endotoxin-induced inflammatory responses by inhibiting NF-κB activation. Archives of Biochemistry and Biophysics. 2011;506(2):223–235.
    1. Crişan TO, Plantinga TS, van de Veerdonk FL, et al. Inflammasome-independent modulation of cytokine response by autophagy in human cells. PLoS ONE. 2011;6(4)e18666
    1. Meng Q, Cai D. Defective hypothalamic autophagy directs the central pathogenesis of obesity via the IκB kinase β (IKKβ)/NF-κB pathway. The Journal of Biological Chemistry. 2011;286:32324–32332.
    1. Hoffman WH, Andjelkovic AV, Zhang W, Passmore GG, Sima AAF. Insulin and IGF-1 receptors, nitrotyrosin and cerebral neuronal deficits in two young patients with diabetic ketoacidosis and fatal brain edema. Brain Research. 2010;1343:168–177.
    1. Barrett EJ, DeFronzo RA, Bevilacqua S, Ferrannini E. Insulin resistance in diabetic ketoacidosis. Diabetes. 1982;31(10):923–928.
    1. Schworer CM, Mortimore GE. Glucagon induced autophagy and proteolysis in rat liver: mediation by selective deprivation of intracellular amino acids. Proceedings of the National Academy of Sciences of the United States of America. 1979;76(7):3169–3173.
    1. Liu M, Spellberg B, Phan QT, et al. The endothelial cell receptor GRP78 is required for mucormycosis pathogenesis in diabetic mice. Journal of Clinical Investigation. 2010;120(6):1914–1924.
    1. Ding Q, Dimayuga E, Keller JN. Oxidative stress alters neuronal RNA- and protein-synthesis: implications for neural viability. Free Radical Research. 2007;41(8):903–910.
    1. Castellani RJ, Nunomura A, Rolston RK, et al. Sublethal RNA oxidation as a mechanism for neurodegenerative disease. International Journal of Molecular Sciences. 2008;9(5):789–806.
    1. Hoffman WH, Siedlak SL, Wang Y, Castellani RJ, Smith MA. Oxidative damage is present in the fatal brain edema of diabetic ketoacidosis. Brain Research. 2011;1369:194–202.
    1. Kim DS, Jeong SK, Kim HR, Chae SW, Chae HJ. Effects of triglyceride on ER stress and insulin resistance. Biochemical and Biophysical Research Communications. 2007;363(1):140–145.
    1. Finn PF, Dice JF. Ketone bodies stimulate chaperone-mediated autophagy. Journal of Biological Chemistry. 2005;280(27):25864–25870.
    1. Hill BG, Haberzettl P, Ahmed Y, Srivastava S, Bhatnagar A. Unsaturated lipid peroxidation-derived aldehydes activate autophagy in vascular smooth-muscle cells. Biochemical Journal. 2008;410(3):525–534.
    1. Muller C, Salvayre R, Nègre-Salvayre A, Vindis C. HDLs inhibit endoplasmic reticulum stress and autophagic response induced by oxidized LDLs. Cell Death and Differentiation. 2011;18(5):817–828.
    1. Martinez-Vicente M, Sovak G, Cuervo AM. Protein degradation and aging. Experimental Gerontology. 2005;40(8-9):622–633.
    1. Hoffman WH, Shacka JJ, Andjelkovic AV. Autophagy in the brains of young patients with poorly controlled T1DM and fatal diabetic ketoacidosis. Experimental and Molecular Pathology. 2012;93(2):273–280.
    1. Wessels AM, Rombouts SA, Remijnse PL, et al. Cognitive performance in type 1 diabetes patients is associated with cerebral white matter volume. Diabetologia. 2007;50(8):1763–1769.
    1. Aye T, Reiss AL, Kesler S, et al. The feasibility of detecting neuropsychologic and neuroanatomic effects of type 1 diabetes in young children. Diabetes Care. 2011;34(7):1458–1462.

Source: PubMed

3
Prenumerera