Risk factors influencing survival of acellular porcine corneal stroma in infectious keratitis: a prospective clinical study

Saiqun Li, Meng Li, Li Gu, Lulu Peng, Yuqing Deng, Jing Zhong, Bowen Wang, Qian Wang, Yichen Xiao, Jin Yuan, Saiqun Li, Meng Li, Li Gu, Lulu Peng, Yuqing Deng, Jing Zhong, Bowen Wang, Qian Wang, Yichen Xiao, Jin Yuan

Abstract

Background: A worldwide lack of donor corneas demands the bioengineered corneas be developed as an alternative. The primary objective of the current study was to evaluate the efficacy of acellular porcine corneal stroma (APCS) transplantation in various types of infectious keratitis and identify risk factors that may increase APCS graft failure.

Methods: In this prospective interventional study, 39 patients with progressive infectious keratitis underwent therapeutic lamellar keratoplasty using APCS and were followed up for 12 months. Data collected for analysis included preoperative characteristics, visual acuity, graft survival and complications. Graft survival was evaluated by the Kaplan-Meier method and compared with the log-rank test.

Results: The percentage of eyes that had a visual acuity of 20/40 or better increased from 10.3% preoperatively to 51.2% at 12 months postoperatively. Twelve patients (30.8%) experienced graft failure within the follow-up period. The primary reasons given for graft failure was noninfectious graft melting (n = 5), and the other causes included recurrence of primary infection (n = 4) and extensive graft neovascularization (n = 3). No graft rejection was observed during the follow-up period. A higher relative risk (RR) of graft failure was associated with herpetic keratitis (RR = 8.0, P = 0.046) and graft size larger than 8 mm (RR = 6.5, P < 0.001).

Conclusions: APCS transplantation is an alternative treatment option for eyes with medically unresponsive infectious keratitis. Despite the efficacy of therapeutic lamellar keratoplasty with APCS, to achieve a good prognosis, restriction of surgical indications, careful selection of patients and postoperative management must be emphasized. Trial registration Prospective Study of Deep Anterior Lamellar Keratoplasty Using Acellular Porcine Cornea, NCT03105466. Registered 31 August 2016, ClinicalTrails.gov.

Keywords: Acellular porcine corneal stroma; Infectious keratitis; Therapeutic lamellar keratoplasty.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Architecture of acellular porcine corneal stroma (APCS). Hematoxylin and eosin (H&E) staining of APCS (a) and human cornea (b). Total magnification = 100×. Scanning electron micrography (SEM) images of APCS (c) and human cornea (d). Total magnification = 1000×
Fig. 2
Fig. 2
Pre- and postoperative outcomes of 3 patients who underwent therapeutic lamellar keratoplasty using acellular porcine corneal stroma (APCS) for medically unresponsive infectious keratitis. Images were obtained in eyes before surgery (a, e), and at 1 day (b, f), 3 months (c, g) and 12 months (d, h) postoperatively
Fig. 3
Fig. 3
Visual outcomes in eyes undergoing acellular porcine corneal stroma (APCS) transplantation. The majority of patients had improved best-corrected visual acuity (BCVA) at 12 months after surgery. The points on the diagonal line show that the BCVA was the same preoperatively and 12 months postoperatively. Counting fingers, hand motion and light perception are shown as logarithm of the minimum angle of resolution (logMAR) values of 0.004, 0.002 and 0.001, respectively
Fig. 4
Fig. 4
Slit-lamp microscopy images of eyes with graft failure. ac A patient was diagnosed with fungal keratitis who experienced recurrent infection within 1 week after the operation. A repeated PKP was performed. df A patient with mild eyelid deformity and lagophthalmos, which resulted in neovessel ingrowth and led to late graft dissolution. gi A patient with a diagnosis of herpes simplex keratitis who had persistent epithelial defects after the operation that ultimately progressed to corneal ulceration. jl The graft was transparent in the initial postoperative period, but neovessels later grew into the center of the graft
Fig. 5
Fig. 5
Kaplan–Meier survival curve depicting the graft failure episodes in eyes submitted to acellular porcine corneal stroma (APCS) implantation. a Total graft survival; b graft survival in eyes with various types of infectious keratitis; c graft survival in eyes with a graft size larger or smaller than a diameter of 8 mm. HSK, herpes simplex keratitis

References

    1. Hussain S, Johri A, Rao SK. Infectious keratitis: a review. Bengal Ophthal J. 2015;1–11. .
    1. Whitcher JP, Srinivasan M, Upadhyay MP. Corneal blindness: a global perspective. Bull World Health Org. 2001;79:214–221.
    1. Austin A, Lietman T, Rose-Nussbaumer J. Update on the management of infectious keratitis. Ophthalmology. 2017;124:1678–1689. doi: 10.1016/j.ophtha.2017.05.012.
    1. Anshu A, Parthasarathy A, Mehta JS, Htoon HM, Tan DT. Outcomes of therapeutic deep lamellar keratoplasty and penetrating keratoplasty for advanced infectious keratitis: a comparative study. Ophthalmology. 2009;116:615–623. doi: 10.1016/j.ophtha.2008.12.043.
    1. Sharma N, Sachdev R, Jhanji V, Titiyal JS, Vajpayee RB. Therapeutic keratoplasty for microbial keratitis. Curr Opin Ophthalmol. 2010;21:293–300.
    1. Shang X, Zhang M. Body and organ donation in Wuhan, China. Lancet. 2010;376:1033–1034. doi: 10.1016/S0140-6736(10)60937-3.
    1. Hicks C, Crawford G, Lou X, Tan D, Snibson G, Sutton G, Downie N, Werner L, Chirila T, Constable I. Corneal replacement using a synthetic hydrogel cornea, AlphaCor: device, preliminary outcomes and complications. Eye. 2003;17:385–392. doi: 10.1038/sj.eye.6700333.
    1. Liu Y, Gan L, Carlsson DJ, Fagerholm P, Lagali N, Watsky MA, Munger R, Hodge WG, Priest D, Griffith M. A simple, cross-linked collagen tissue substitute for corneal implantation. Invest Ophthalmol Vis Sci. 2006;47:1869–1875. doi: 10.1167/iovs.05-1339.
    1. Matthyssen S, Van den Bogerd B, Dhubhghaill SN, Koppen C, Zakaria N. Corneal regeneration: a review of stromal replacements. Acta Biomater. 2018;69:31–41. doi: 10.1016/j.actbio.2018.01.023.
    1. Zhang MC, Liu X, Jin Y, Jiang DL, Wei XS, Xie HT. Lamellar keratoplasty treatment of fungal corneal ulcers with acellular porcine corneal stroma. Am J Transplant. 2015;15:1068–1075. doi: 10.1111/ajt.13096.
    1. Zheng J, Huang X, Zhang Y, Wang Y, Qin Q, Lin L, Jin X, Lam C, Zhang J. Short-term results of acellular porcine corneal stroma keratoplasty for herpes simplex keratitis. Xenotransplantation. 2019;26:e12509. doi: 10.1111/xen.12509.
    1. Lynch AP, Ahearne M. Strategies for developing decellularized corneal scaffolds. Exp Eye Res. 2013;108:42–47. doi: 10.1016/j.exer.2012.12.012.
    1. Luo H, Lu Y, Wu T, Zhang M, Zhang Y, Jin Y. Construction of tissue-engineered cornea composed of amniotic epithelial cells and acellular porcine cornea for treating corneal alkali burn. Biomaterials. 2013;34:6748–6759. doi: 10.1016/j.biomaterials.2013.05.045.
    1. Xu CC, Chan RW. Pore architecture of a bovine acellular vocal fold scaffold. Tissue Eng Part A. 2008;14:1893–1903. doi: 10.1089/ten.tea.2007.0243.
    1. Premaladha J, Ravichandran K. Novel approaches for diagnosing melanoma skin lesions through supervised and deep learning algorithms. J Med Syst. 2016;40:96. doi: 10.1007/s10916-016-0460-2.
    1. Whitcher JP, Srinivasan M, Upadhyay M. Corneal blindness: a global perspective. J Bull World Health Org. 2001;79:214–221.
    1. Liu W, Merrett K, Griffith M, Fagerholm P, Dravida S, Heyne B, Scaiano JC, Watsky MA, Shinozaki N, Lagali N, et al. Recombinant human collagen for tissue engineered corneal substitutes. Biomaterials. 2008;29:1147–1158. doi: 10.1016/j.biomaterials.2007.11.011.
    1. Gil ES, Mandal BB, Park SH, Marchant JK, Omenetto FG, Kaplan DL. Helicoidal multi-lamellar features of RGD-functionalized silk biomaterials for corneal tissue engineering. Biomaterials. 2010;31:8953–8963. doi: 10.1016/j.biomaterials.2010.08.017.
    1. Yoeruek E, Bayyoud T, Maurus C, Hofmann J, Spitzer MS, Bartz-Schmidt KU, Szurman P. Decellularization of porcine corneas and repopulation with human corneal cells for tissue-engineered xenografts. Acta Ophthalmol. 2012;90:e125–e131. doi: 10.1111/j.1755-3768.2011.02261.x.
    1. Di Zazzo A, Kheirkhah A, Abud TB, Goyal S, Dana R. Management of high-risk corneal transplantation. Surv Ophthalmol. 2017;62:816–827. doi: 10.1016/j.survophthal.2016.12.010.
    1. Hara H, Cooper DKJX. The immunology of corneal xenotransplantation: a review of the literature. Xenotransplantation. 2010;17:338–349. doi: 10.1111/j.1399-3089.2010.00608.x.
    1. Wang Z, Ge J, Xu J, Chen J. Relative quantitative analysis of corneal immunogenicity. Zhonghua Yan Ke Za Zhi. 2002;38:535–538.
    1. Lynn AK, Yannas IV, Bonfield W. Antigenicity and immunogenicity of collagen. J Biomed Mater Res B Appl Biomater. 2004;71:343–354. doi: 10.1002/jbm.b.30096.
    1. Jin B, Zhu X. The pathogenesis and prevention of corneal graft melting after keratoplasty. J Clin Ophthalmol. 2017;1:10–18. doi: 10.35841/Clinical-Ophthalmology.1000103.
    1. Hossain P. The corneal melting point. Eye (Lond) 2012;26:1029–1030. doi: 10.1038/eye.2012.136.
    1. Carter RT, Kambampati R, Murphy CJ, Bentley E. Expression of matrix metalloproteinase 2 and 9 in experimentally wounded canine corneas and spontaneous chronic corneal epithelial defects. Cornea. 2007;26:1213–1219. doi: 10.1097/ICO.0b013e31814b8a28.
    1. Shi W, Liu J, Li M, Gao H, Wang T. Expression of MMP, HPSE, and FAP in stroma promoted corneal neovascularization induced by different etiological factors. Curr Eye Res. 2010;35:967–977. doi: 10.3109/02713683.2010.502294.
    1. Kvanta A, Sarman S, Fagerholm P, Seregard S, Steen B. Expression of matrix metalloproteinase-2 (MMP-2) and vascular endothelial growth factor (VEGF) in inflammation-associated corneal neovascularization. Exp Eye Res. 2000;70:419–428. doi: 10.1006/exer.1999.0790.
    1. Angele P, Abke J, Kujat R, Faltermeier H, Schumann D, Nerlich M, Kinner B, Englert C, Ruszczak Z, Mehrl R, Mueller R. Influence of different collagen species on physico-chemical properties of crosslinked collagen matrices. Biomaterials. 2004;25:2831–2841. doi: 10.1016/j.biomaterials.2003.09.066.
    1. Bastian F, Rabson A, Yee C, Tralka T. Herpesvirus hominis: isolation from human trigeminal ganglion. Science. 1972;178:306–307. doi: 10.1126/science.178.4058.306.
    1. Lyall DA, Tarafdar S, Gilhooly MJ, Roberts F, Ramaesh K. Long term visual outcomes, graft survival and complications of deep anterior lamellar keratoplasty in patients with herpes simplex related corneal scarring. Br J Ophthalmol. 2012;96:1200–1203. doi: 10.1136/bjophthalmol-2012-301947.
    1. Gutow A, Soong HK, Meyer RF, Sugar A, Musch DC. Corneal epithelial healing after keratoplasty for herpes simplex keratitis. Cornea. 1986;5:5–10. doi: 10.1097/00003226-198605010-00003.
    1. Williams KA, Roder D, Esterman A, Muehlberg SM, Coster DJ. Factors predictive of corneal graft survival. Report from the Australian corneal graft registry. Ophthalmology. 1992;99:403–414. doi: 10.1016/S0161-6420(92)31960-8.
    1. Volker-Dieben HJ, D’Amaro J, Kok-van Alphen CC. Hierarchy of prognostic factors for corneal allograft survival. Aust N Z J Ophthalmol. 1987;15:11–18. doi: 10.1111/j.1442-9071.1987.tb00300.x.
    1. Killingsworth DW, Stern GA, Driebe WT, Knapp A, Dragon DM. Results of therapeutic penetrating keratoplasty. J Ophthalmol. 1993;100:534–541.
    1. Kashiwabuchi RT, de Freitas D, Alvarenga LS, Vieira L, Contarini P, Sato E, Foronda A, Hofling-Lima AL. Corneal graft survival after therapeutic keratoplasty for Acanthamoeba keratitis. Acta Ophthalmol. 2008;86:666–669. doi: 10.1111/j.1600-0420.2007.01086.x.

Source: PubMed

3
Prenumerera