The Effect of Renal Denervation on Plasma Adipokine Profile in Patients with Treatment Resistant Hypertension

Nina Eikelis, Dagmara Hering, Petra Marusic, Jacqueline Duval, Louise J Hammond, Antony S Walton, Elisabeth A Lambert, Murray D Esler, Gavin W Lambert, Markus P Schlaich, Nina Eikelis, Dagmara Hering, Petra Marusic, Jacqueline Duval, Louise J Hammond, Antony S Walton, Elisabeth A Lambert, Murray D Esler, Gavin W Lambert, Markus P Schlaich

Abstract

Background: We previously demonstrated the effectiveness of renal denervation (RDN) to lower blood pressure (BP) at least partially via the reduction of sympathetic stimulation to the kidney. A number of adipocyte-derived factors are implicated in BP control in obesity. Aim: The aim of this study was to examine whether RDN may have salutary effects on the adipokine profile in patients with resistant hypertension (RH). Methods: Fifty seven patients with RH undergoing RDN program have been included in this study (65% males, age 60.8 ± 1.5 years, BMI 32.6 ± 0.7 kg/m2, mean ± SEM). Throughout the study, the patients were on an average of 4.5 ± 2.7 antihypertensive drugs. Automated seated office BP measurements and plasma concentrations of leptin, insulin, non-esterified fatty acids (NEFA), adiponectin and resistin were assessed at baseline and the 3 months after RDN. Results: There was a significant reduction in mean office systolic (168.75 ± 2.57 vs. 155.23 ± 3.17 mmHg, p < 0.001) and diastolic (90.68 ± 2.31 vs. 83.74 ± 2.36 mmHg, p < 0.001) BP 3 months after RDN. Body weight, plasma leptin and resistin levels and heart rate remained unchanged. Fasting insulin concentration significantly increased 3 months after the procedure (20.05 ± 1.46 vs. 29.70 ± 2.51 uU/ml, p = 0.002). There was a significant drop in circulating NEFA at follow up (1.01 ± 0.07 vs. 0.47 ± 0.04 mEq/l, p < 0.001). Adiponectin concentration was significantly higher after RDN (5,654 ± 800 vs. 6,644 ± 967 ng/ml, p = 0.024). Conclusions: This is the first study to demonstrate that RDN is associated with potentially beneficial effects on aspects of the adipokine profile. Increased adiponectin and reduced NEFA production may contribute to BP reduction via an effect on metabolic pathways. Clinical Trial Registration Number: NCT00483808, NCT00888433.

Keywords: adiponectin; non-esterified fatty acids; obesity; renal denervation; resistant hypertension.

Figures

Figure 1
Figure 1
Office systolic (top) and diastolic (bottom) blood pressures (BP) at baseline (BSL) and 3 months follow up (3 MFU). Data expressed as mean ± SEM. *p < 0.05.
Figure 2
Figure 2
Plasma concentrations of leptin (top) and insulin (bottom) at baseline (BSL) and 3 months follow up (3 MFU). Data expressed as mean ± SEM. *p < 0.05.
Figure 3
Figure 3
Plasma concentrations of adiponectin (top), resistin (middle), and non-esterified fatty acids (NEFA) (bottom) at baseline (BSL) and 3 months follow up (3 MFU). Data expressed as mean ± SEM. *p < 0.05.

References

    1. Al-Azzam S. I., Alkhateeb A. M., Alzoubi K. H., Alzayadeen R. N., Ababneh M. A., Khabour O. F. (2013). Atorvastatin treatment modulates the interaction between leptin and adiponectin, and the clinical parameters in patients with type II diabetes. Exp. Ther. Med. 6, 1565–1569. 10.3892/etm.2013.1347
    1. Baden M. Y., Yamada Y., Takahi Y., Obata Y., Saisho K., Tamba S. (2013). Association of adiponectin with blood pressure in healthy people. Clin. Endocrinol. 78, 226–231. 10.1111/j.1365-2265.2012.04370.x
    1. Bangalore S., Fayyad R., Laskey R., Demicco D. A., Deedwania P., Kostis J. B. (2014). Prevalence, predictors, and outcomes in treatment-resistant hypertension in patients with coronary disease. Am. J. Med. 127, 71–81. 10.1016/j.amjmed.2013.07.038
    1. Bokarewa M., Nagaev I., Dahlberg L., Smith U., Tarkowski A. (2005). Resistin, an adipokine with potent proinflammatory properties. J. Immunol. 174, 5789–5795. 10.4049/jimmunol.174.9.5789
    1. Boustany C. M., Bharadwaj K., Daugherty A., Brown D. R., Randall D. C., Cassis L. A. (2004). Activation of the systemic and adipose renin-angiotensin system in rats with diet-induced obesity and hypertension. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, R943–R949. 10.1152/ajpregu.00265.2004
    1. Chu C. H., Lee J. K., Lam H. C., Lu C. C., Sun C. C., Wang M. C., et al. . (2008). Atorvastatin does not affect insulin sensitivity and the adiponectin or leptin levels in hyperlipidemic Type 2 diabetes. J. Endocrinol. Invest. 31, 42–47. 10.1007/BF03345565
    1. de Jongh R. T., Serné E. H., IJzerman R. G., de Vries G., Stehouwer C. D. (2004). Impaired microvascular function in obesity: implications for obesity-associated microangiopathy, hypertension, and insulin resistance. Circulation 109, 2529–2535. 10.1161/01.CIR.0000129772.26647.6F
    1. Delporte M. L., Funahashi T., Takahashi M., Matsuzawa Y., Brichard S. M. (2002). Pre- and post-translational negative effect of beta-adrenoceptor agonists on adiponectin secretion: in vitro and in vivo studies. Biochem. J. 367(Pt 3), 677–685. 10.1042/bj20020610
    1. Eikelis N., Schlaich M., Aggarwal A., Kaye D., Esler M. (2003). Interactions between leptin and the human sympathetic nervous system. Hypertension 41, 1072–1079. 10.1161/01.HYP.0000066289.17754.49
    1. Esler M., Straznicky N., Eikelis N., Masuo K., Lambert G., Lambert E. (2006). Mechanisms of sympathetic activation in obesity-related hypertension. Hypertension 48, 787–796. 10.1161/01.HYP.0000242642.42177.49
    1. Florian J. P., Pawelczyk J. A. (2009). Non-esterified fatty acids increase arterial pressure via central sympathetic activation in humans. Clin. Sci. 118, 61–69. 10.1042/CS20090063
    1. Hering D., Lambert E. A., Marusic P., Walton A. S., Krum H., Lambert G. W., et al. . (2013). Substantial reduction in single sympathetic nerve firing after renal denervation in patients with resistant hypertension. Hypertension 61, 457–464. 10.1161/HYPERTENSIONAHA.111.00194
    1. Hering D., Marusic P., Walton A. S., Lambert E. A., Krum H., Narkiewicz K., et al. . (2014). Sustained sympathetic and blood pressure reduction 1 year after renal denervation in patients with resistant hypertension. Hypertension 64, 118–124. 10.1161/HYPERTENSIONAHA.113.03098
    1. Hucking K., Hamilton-Wessler M., Ellmerer M., Bergman R. N. (2003). Burst-like control of lipolysis by the sympathetic nervous system in vivo. J. Clin. Invest. 111, 257–264. 10.1172/JCI14466
    1. Ichida Y., Hasegawa G., Fukui M., Obayashi H., Ohta M., Fujinami A., et al. . (2006). Effect of atorvastatin on in vitro expression of resistin in adipocytes and monocytes/macrophages and effect of atorvastatin treatment on serum resistin levels in patients with type 2 diabetes. Pharmacology 76, 34–39. 10.1159/000088948
    1. Imai J., Katagiri H., Yamada T., Ishigaki Y., Ogihara T., Uno K., et al. . (2006). Cold exposure suppresses serum adiponectin levels through sympathetic nerve activation in mice. Obesity 14, 1132–1141. 10.1038/oby.2006.130
    1. Imatoh T., Miyazaki M., Momose Y., Tanihara S., Une H. (2008). Adiponectin levels associated with the development of hypertension: a prospective study. Hypertens. Res. 31, 229–233. 10.1291/hypres.31.229
    1. Irvin M. R., Booth J. N., III., Shimbo D., Lackland D. T., Oparil S., Howard G., et al. . (2014). Apparent treatment-resistant hypertension and risk for stroke, coronary heart disease, and all-cause mortality. J. Am. Soc. Hypertens. 8, 405–413. 10.1016/j.jash.2014.03.003
    1. Jamaluddin M. S., Weakley S. M., Yao Q., Chen C. (2012). Resistin: functional roles and therapeutic considerations for cardiovascular disease. Br. J. Pharmacol. 165, 622–632. 10.1111/j.1476-5381.2011.01369.x
    1. Karpe F., Dickmann J. R., Frayn K. N. (2011). Fatty acids, obesity, and insulin resistance: time for a reevaluation. Diabetes 60, 2441–2449. 10.2337/db11-0425
    1. Krum H., Schlaich M., Whitbourn R., Sobotka P. A., Sadowski J., Bartus K., et al. . (2009). Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet 373, 1275–1281. 10.1016/S0140-6736(09)60566-3
    1. Kumada M., Kihara S., Sumitsuji S., Kawamoto T., Matsumoto S., Ouchi N., et al. . (2003). Association of hypoadiponectinemia with coronary artery disease in men. Arterioscler. Thromb. Vasc. Biol. 23, 85–89. 10.1161/01.ATV.0000048856.22331.50
    1. Kusminski C. M., McTernan P. G., Schraw T., Kos K., O'Hare J. P., Ahima R., et al. . (2007). Adiponectin complexes in human cerebrospinal fluid: distinct complex distribution from serum. Diabetologia 50, 634–642. 10.1007/s00125-006-0577-9
    1. Lam T. K., Schwartz G. J., Rossetti L. (2005). Hypothalamic sensing of fatty acids. Nat. Neurosci. 8, 579–584. 10.1038/nn1456
    1. Lavoie F., Frisch F., Brassard P., Normand-Lauzière F., Cyr D., Gagnon R., et al. . (2009). Relationship between total and high molecular weight adiponectin levels and plasma nonesterified fatty acid tolerance during enhanced intravascular triacylglycerol lipolysis in men. J. Clin. Endocrinol. Metab. 94, 998–1004. 10.1210/jc.2008-1021
    1. Mahfoud F., Schlaich M., Kindermann I., Ukena C., Cremers B., Brandt M. C., et al. . (2011). Effect of renal sympathetic denervation on glucose metabolism in patients with resistant hypertension: a pilot study. Circulation 123, 1940–1946. 10.1161/CIRCULATIONAHA.110.991869
    1. McLellan A. J., Schlaich M. P., Taylor A. J., Prabhu S., Hering D., Hammond L., et al. . (2015). Reverse cardiac remodeling after renal denervation: atrial electrophysiologic and structural changes associated with blood pressure lowering. Heart Rhythm 12, 982–990. 10.1016/j.hrthm.2015.01.039
    1. Miroslawska A. K., Gjessing P. F., Solbu M. D., Fuskevåg O. M., Jenssen T. G., Steigen T. K. (2016). Renal denervation for resistant hypertension fails to improve insulin resistance as assessed by hyperinsulinemic-euglycemic step clamp. Diabetes 65, 2164–2168. 10.2337/db16-0205
    1. Nowak L., Adamczak M., Wiecek A. (2005). Blockade of sympathetic nervous system activity by rilmenidine increases plasma adiponectin concentration in patients with essential hypertension. Am. J. Hypertens. 18, 1470–1475. 10.1016/j.amjhyper.2005.05.026
    1. Ohashi K., Ouchi N., Matsuzawa Y. (2012). Anti-inflammatory and anti-atherogenic properties of adiponectin. Biochimie 94, 2137–2142. 10.1016/j.biochi.2012.06.008
    1. Pantsulaia I., Livshits G., Trofimov S., Kobyliansky E. (2007). Genetic and environmental determinants of circulating resistin level in a community-based sample. Eur. J. Endocrinol. 156, 129–135. 10.1530/eje.1.02311
    1. Papadopoulos D. P., Makris T. K., Krespi P. G., Poulakou M., Stavroulakis G., Hatzizacharias A. N., et al. . (2005). Adiponectin and resistin plasma levels in healthy individuals with prehypertension. J. Clin. Hypertens. 7, 729–733. 10.1111/j.1524-6175.2005.04888.x
    1. Ryan A. S., Berman D. M., Nicklas B. J., Sinha M., Gingerich R. L., Meneilly G. S., et al. . (2003). Plasma adiponectin and leptin levels, body composition, and glucose utilization in adult women with wide ranges of age and obesity. Diabetes Care 26, 2383–2388. 10.2337/diacare.26.8.2383
    1. Simonds S. E., Pryor J. T., Ravussin E., Greenway F. L., Dileone R., Allen A. M., et al. . (2014). Leptin mediates the increase in blood pressure associated with obesity. Cell 159, 1404–1416. 10.1016/j.cell.2014.10.058
    1. Steinberg H. O., Tarshoby M., Monestel R., Hook G., Cronin J., Johnson A., et al. . (1997). Elevated circulating free fatty acid levels impair endothelium-dependent vasodilation. J. Clin. Invest. 100, 1230–1239. 10.1172/JCI119636
    1. Steppan C. M., Bailey S. T., Bhat S., Brown E. J., Banerjee R. R., Wright C. M., et al. . (2001). The hormone resistin links obesity to diabetes. Nature 409, 307–312. 10.1038/35053000
    1. Stojiljkovic M. P., Zhang D., Lopes H. F., Lee C. G., Goodfriend T. L., Egan B. M., et al. . (2001). Hemodynamic effects of lipids in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, R1674–R1679.
    1. Symplicity H. T. N. I., Esler M. D., Krum H., Sobotka P. A., Schlaich M. P., Schmieder R. E., et al. (2010). Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet 376, 1903–1909. 10.1016/S0140-6736(10)62039-9
    1. Tanida M., Shen J., Horii Y., Matsuda M., Kihara S., Funahashi T., et al. . (2007). Effects of adiponectin on the renal sympathetic nerve activity and blood pressure in rats. Exp. Biol. Med. 232, 390–397.
    1. Witkowski A., Prejbisz A., Florczak E., Kądziela J., Śliwiński P., Bieleń P., et al. . (2011). Effects of renal sympathetic denervation on blood pressure, sleep apnea course, and glycemic control in patients with resistant hypertension and sleep apnea. Hypertension 58, 559–565. 10.1161/HYPERTENSIONAHA.111.173799
    1. Yang R. Z., Huang Q., Xu A., McLenithan J. C., Eisen J. A., Shuldiner A. R., et al. . (2003). Comparative studies of resistin expression and phylogenomics in human and mouse. Biochem. Biophys. Res. Commun. 310, 927–935. 10.1016/j.bbrc.2003.09.093
    1. Zhang L., Curhan G. C., Forman J. P. (2010). Plasma resistin levels associate with risk for hypertension among nondiabetic women. J. Am. Soc. Nephrol. 21, 1185–1191. 10.1681/ASN.2009101053

Source: PubMed

3
Prenumerera