Auditory hallucinations across the psychosis spectrum: Evidence of dysconnectivity involving cerebellar and temporal lobe regions

Melissa Hwang, Youkyung S Roh, Jessica Talero, Bruce M Cohen, Justin T Baker, Roscoe O Brady, Dost Öngür, Ann K Shinn, Melissa Hwang, Youkyung S Roh, Jessica Talero, Bruce M Cohen, Justin T Baker, Roscoe O Brady, Dost Öngür, Ann K Shinn

Abstract

Background: Auditory hallucinations (AH) are typically associated with schizophrenia (SZ), but they are also prevalent in bipolar disorder (BD). Despite the large body of research on the neural correlates of AH in SZ, the pathophysiology underlying AH remains unclear. Few studies have examined the neural substrates associated with propensity for AH in BD. Investigating AH across the psychosis spectrum has the potential to inform about the neural signature associated with the trait of AH, irrespective of psychiatric diagnosis.

Methods: We compared resting state functional magnetic resonance imaging data in psychosis patients with (n = 90 AH; 68 SZ, 22 BD) and without (n = 55 NAH; 16 SZ, 39 BD) lifetime AH. We performed region of interest (ROI)-to-ROI functional connectivity (FC) analysis using 91 cortical, 15 subcortical, and 26 cerebellar atlas-defined regions. The primary aim was to identify FC differences between patients with and without lifetime AH. We secondarily examined differences between AH and NAH within each diagnosis.

Results: Compared to the NAH group, patients with AH showed higher FC between cerebellum and frontal (left precentral gyrus), temporal [right middle temporal gyrus (MTG), left inferior temporal gyrus (ITG), left temporal fusiform gyrus)], parietal (bilateral superior parietal lobules), and subcortical (left accumbens, left palldium) brain areas. AH also showed lower FC between temporal lobe regions (between right ITG and right MTG and bilateral superior temporal gyri) relative to NAH.

Conclusions: Our findings suggest that dysconnectivity involving the cerebellum and temporal lobe regions may be common neurofunctional elements associated with AH propensity across the psychosis spectrum. We also found dysconnectivity patterns that were unique to lifetime AH within SZ or bipolar psychosis, suggesting both common and distinct mechanisms underlying AH pathophysiology in these disorders.

Keywords: Auditory hallucinations; Bipolar disorder; Cerebellum; Functional connectivity; Resting state functional magnetic resonance imaging; Schizophrenia.

Conflict of interest statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Copyright © 2021. Published by Elsevier Inc.

Figures

Fig. 1
Fig. 1
ROI-to-ROI functional connectivity of patients with (AH) and without lifetime auditory hallucinations (NAH) across the psychosis spectrum. Compared to NAH patients, AH patients showed multiple regions (cerebral cortical and subcortical) that were functional hyperconnected to cerebellar regions, and hypoconnectivity between temporal lobe areas. Results were adjusted for motion, diagnosis, lifetime hallucinations in other modalities, negative symptom severity, mania severity, depression severity, and antipsychotic exposure as measured by chlorpromazine equivalents. The significance threshold was set at p < 0.05, two-sided, false discovery rate (FDR)-corrected for multiple comparisons.
Fig. 2
Fig. 2
Cerebello-cerebral cortical functional connectivity associated with lifetime AH across the psychosis spectrum. Compared to NAH patients, AH patients showed higher functional connectivity between cerebellum and regions in frontal, temporal, and parietal areas. The bar graphs show the Fisher-transformed Pearson’s correlation between example ROI-pairs, with healthy control data presented in dashed lines as a point of reference. The data show patients with AH to have increased connectivity relative to both NAH and also healthy controls.
Fig. 3
Fig. 3
Cerebello-subcortical functional connectivity associated with lifetime AH across the psychosis spectrum. Compared to NAH patients, AH patients showed higher functional connectivity between cerebellum and left nucleus accumbens and left pallidum. The bar graphs show the Fisher-transformed Pearson’s correlation between the two significant ROI-to-ROI findings, with healthy control data presented in dashed lines as a point of reference.
Fig. 4
Fig. 4
Functional connectivity between temporal lobe regions in association with lifetime AH across the psychosis spectrum. Compared to NAH patients, AH patients showed lower functional connectivity between temporal lobe areas within the right hemisphere as well as between hemispheres. The bar graphs show the Fisher-transformed Pearson’s correlation between example ROI-pairs, with healthy control data presented in dashed lines as a point of reference.
Fig. 5
Fig. 5
Functional connectivity of AH vs. NAH within each diagnostic category. (A) Schizophrenia AH vs. schizophrenia NAH. (B) Bipolar psychosis AH vs. bipolar psychosis NAH. (See supplementary materials for Fisher-transformed correlation coefficients.)

References

    1. Dierks T., Linden D.E., Jandl M., et al. Activation of Heschl’s gyrus during auditory hallucinations. Neuron. 1999;22(3):615–621.
    1. Dugre J.R., Guay J.P., Dumais A. Risk factors of compliance with self-harm command hallucinations in individuals with affective and non-affective psychosis. Schizophr Res. 2018;195:115–121. doi: 10.1016/j.schres.2017.09.001.
    1. Falloon I.R., Talbot R.E. Persistent auditory hallucinations: coping mechanisms and implications for management. Psychol Med. 1981;11(2):329–339.
    1. Hor K., Taylor M. Suicide and schizophrenia: a systematic review of rates and risk factors. J Psychopharmacol. 2010;24(4 Suppl):81–90. doi: 10.1177/1359786810385490.
    1. Goghari V.M., Harrow M., Grossman L.S., Rosen C. A 20-year multi-follow-up of hallucinations in schizophrenia, other psychotic, and mood disorders. Psychol Med. 2013;43(6):1151–1160. doi: 10.1017/S0033291712002206.
    1. Goghari V.M., Harrow M. Twenty year multi-follow-up of different types of hallucinations in schizophrenia, schizoaffective disorder, bipolar disorder, and depression. Schizophr Res. 2016;176(2–3):371–377. doi: 10.1016/j.schres.2016.06.027.
    1. Shergill S.S., Murray R.M., McGuire P.K. Auditory hallucinations: a review of psychological treatments. Schizophr Res. 1998;32(3):137–150. doi: 10.1016/s0920-9964(98)00052-8.
    1. Agid O., Arenovich T., Sajeev G., Zipursky R.B., Kapur S., Foussias G., Remington G. An algorithm-based approach to first-episode schizophrenia: response rates over 3 prospective antipsychotic trials with a retrospective data analysis. J Clin Psychiatry. 2011;72(11):1439–1444. doi: 10.4088/JCP.09m05785yel.
    1. Pierre J.M. Hallucinations in nonpsychotic disorders: toward a differential diagnosis of “hearing voices”. Harv Rev Psychiatry. 2010;18(1):22–35. doi: 10.3109/10673220903523706.
    1. Waters F., Allen P., Aleman A., Fernyhough C., Woodward T.S., Badcock J.C., Barkus E., Johns L., Varese F., Menon M., Vercammen A., Laroi F. Auditory hallucinations in schizophrenia and nonschizophrenia populations: a review and integrated model of cognitive mechanisms. Schizophr Bull. 2012;38(4):683–693. doi: 10.1093/schbul/sbs045.
    1. Shinn A.K., Pfaff D., Young S., Lewandowski K.E., Cohen B.M., Öngür D. Auditory hallucinations in a cross-diagnostic sample of psychotic disorder patients: a descriptive, cross-sectional study. Compr Psychiatry. 2012;53(6):718–726. doi: 10.1016/j.comppsych.2011.11.003.
    1. Pini S., de Queiroz V., Dell'Osso L., Abelli M., Mastrocinque C., Saettoni M., Catena M., Cassano G.B. Cross-sectional similarities and differences between schizophrenia, schizoaffective disorder and mania or mixed mania with mood-incongruent psychotic features. Eur Psychiatry. 2004;19(1):8–14. doi: 10.1016/j.eurpsy.2003.07.007.
    1. Black D.W., Nasrallah A. Hallucinations and delusions in 1,715 patients with unipolar and bipolar affective disorders. Psychopathology. 1989;22(1):28–34. doi: 10.1159/000284576.
    1. Cao H., Chén O.Y., Chung Y., Forsyth J.K., McEwen S.C., Gee D.G., Bearden C.E., Addington J., Goodyear B., Cadenhead K.S., Mirzakhanian H., Cornblatt B.A., Carrión R.E., Mathalon D.H., McGlashan T.H., Perkins D.O., Belger A., Seidman L.J., Thermenos H., Tsuang M.T., van Erp T.G.M., Walker E.F., Hamann S., Anticevic A., Woods S.W., Cannon T.D. Cerebello-thalamo-cortical hyperconnectivity as a state-independent functional neural signature for psychosis prediction and characterization. Nat. Commun. 2018;9(1):3836. doi: 10.1038/s41467-018-06350-7.
    1. Carlson G.A., Goodwin F.K. The stages of mania. A longitudinal analysis of the manic episode. Arch. Gen. Psychiatry. 1973;28(2):221–228. doi: 10.1001/archpsyc.1973.01750320053009.
    1. Chaturvedi S.K., Sinha V.K. Recurrence of hallucinations in consecutive episodes of schizophrenia and affective disorder. Schizophr Res. 1990;3(2):103–106. doi: 10.1016/0920-9964(90)90042-6.
    1. Hammersley P., Dias A., Todd G., Bowen-Jones K., Reilly B., Bentall R.P. Childhood trauma and hallucinations in bipolar affective disorder: preliminary investigation. Br J Psychiatry. 2003;182(6):543–547. doi: 10.1192/bjp.182.6.543.
    1. Keck P.E., McElroy S.L., Havens J.R., Altshuler L.L., Nolen W.A., Frye M.A., Suppes T., Denicoff K.D., Kupka R., Leverich G.S., Rush A.J., Post R.M. Psychosis in bipolar disorder: phenomenology and impact on morbidity and course of illness. Compr Psychiatry. 2003;44(4):263–269. doi: 10.1016/S0010-440X(03)00089-0.
    1. Argyelan M., Ikuta T., DeRosse P., Braga R.J., Burdick K.E., John M., Kingsley P.B., Malhotra A.K., Szeszko P.R. Resting-state fMRI connectivity impairment in schizophrenia and bipolar disorder. Schizophr Bull. 2014;40(1):100–110. doi: 10.1093/schbul/sbt092.
    1. Baethge C., Baldessarini R.J., Freudenthal K., Streeruwitz A., Bauer M., Bschor T. Hallucinations in bipolar disorder: characteristics and comparison to unipolar depression and schizophrenia. Bipolar Disord. 2005;7(2):136–145. doi: 10.1111/bdi.2005.7.issue-210.1111/j.1399-5618.2004.00175.x.
    1. Taylor M.A., Abrams R. The phenomenology of mania. A new look at some old patients. Arch. Gen. Psychiatry. 1973;29(4):520–522. doi: 10.1001/archpsyc.1973.04200040066011.
    1. Taylor M.A., Abrams R. Acute mania. Clinical and genetic study of responders and nonresponders to treatments. Arch. Gen. Psychiatry. 1975;32(7):863–865. doi: 10.1001/archpsyc.1975.01760250055005.
    1. Tillman R., Geller B., Klages T., Corrigan M., Bolhofner K., Zimerman B. Psychotic phenomena in 257 young children and adolescents with bipolar I disorder: delusions and hallucinations (benign and pathological) Bipolar Disord. 2008;10(1):45–55. doi: 10.1111/j.1399-5618.2008.00480.x.
    1. Braunig P., Sarkar R., Effenberger S., Schoofs N., Kruger S. Gender differences in psychotic bipolar mania. Gend Med. 2009;6(2):356–361. doi: 10.1016/j.genm.2009.07.004.
    1. Kumari R., Chaudhury S., Kumar S. Dimensions of hallucinations and delusions in affective and nonaffective illnesses. ISRN Psychiatry. 2013;2013:1–10. doi: 10.1155/2013/616304.
    1. Skudlarski P., Schretlen D.J., Thaker G.K., Stevens M.C., Keshavan M.S., Sweeney J.A., Tamminga C.A., Clementz B.A., O’Neil K., Pearlson G.D. Diffusion tensor imaging white matter endophenotypes in patients with schizophrenia or psychotic bipolar disorder and their relatives. Am J Psychiatry. 2013;170(8):886–898. doi: 10.1176/appi.ajp.2013.12111448.
    1. Lichtenstein P., Yip B.H., Björk C., Pawitan Y., Cannon T.D., Sullivan P.F., Hultman C.M. Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet. 2009;373(9659):234–239. doi: 10.1016/S0140-6736(09)60072-6.
    1. Wolf N.D., Sambataro F., Vasic N., et al. Dysconnectivity of multiple resting-state networks in patients with schizophrenia who have persistent auditory verbal hallucinations. J. Psychiatry Neurosci. 2011;36(6):366–374. doi: 10.1503/jpn.110008.
    1. Yamada Y., Matsumoto M., Iijima K., Sumiyoshi T. Specificity and Continuity of Schizophrenia and Bipolar Disorder: Relation to Biomarkers. Curr Pharm Des. 2020;26(2):191–200. doi: 10.2174/1381612825666191216153508.
    1. Silbersweig D.A., Stern E., Frith C., Cahill C., Holmes A., Grootoonk S., Seaward J., McKenna P., Chua S.E., Schnorr L., Jones T., Frackowiak R.S.J. A functional neuroanatomy of hallucinations in schizophrenia. Nature. 1995;378(6553):176–179.
    1. Feinberg I. Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence? J Psychiatr Res (Suppl). 1982;17(4):319–334.
    1. Bullmore E.T., Frangou S., Murray R.M. The dysplastic net hypothesis: an integration of developmental and dysconnectivity theories of schizophrenia. Schizophr Res. 1997;28(2-3):143–156.
    1. Wernicke C. Thieme; 1906. Grundrisse der Psychiatrie.
    1. Pillmann F. Carl Wernicke and the neurobiological paradigm in psychiatry. Acta Neuropsychologica. 2007;5(4):246–260.
    1. Bleuler E. International Universities Press; New York, New York: 1911. Dementia Praecox or the Group of Schizophrenias.
    1. Hugdahl K. “Hearing voices”: auditory hallucinations as failure of top-down control of bottom-up perceptual processes. Scand J Psychol. 2009;50(6):553–560. doi: 10.1111/j.1467-9450.2009.00775.x.
    1. Waters F.A., Badcock J.C., Michie P.T., Maybery M.T. Auditory hallucinations in schizophrenia: intrusive thoughts and forgotten memories. Cogn Neuropsychiatry. 2006;11(1):65–83. doi: 10.1080/13546800444000191.
    1. Feinberg I. Efference copy and corollary discharge: implications for thinking and its disorders. Schizophr Bull. 1978;4(4):636–640.
    1. Ford J.M., Mathalon D.H. Corollary discharge dysfunction in schizophrenia: can it explain auditory hallucinations? Int J Psychophysiol. 2005;58(2–3):179–189. doi: 10.1016/j.ijpsycho.2005.01.014.
    1. Song J., Han D.H., Kim S.M., Hong J.S., Min K.J., Cheong J.H., Kim B.N. Differences in gray matter volume corresponding to delusion and hallucination in patients with schizophrenia compared with patients who have bipolar disorder. Neuropsychiatr Dis Treat. 2015;11:1211–1219.
    1. Steinmann S., Leicht G., Mulert C. Interhemispheric auditory connectivity: Structure and function related to auditory verbal hallucinations. Frontiers in Human Neuroscience. 2014;8:55. doi: 10.3389/fnhum.2014.00055.
    1. Northoff G., Qin P. How can the brain’s resting state activity generate hallucinations? A ‘resting state hypothesis’ of auditory verbal hallucinations. Schizophr Res. 2011;127(1–3):202–214. doi: 10.1016/j.schres.2010.11.009.
    1. Schmahmann J.D. An emerging concept. The cerebellar contribution to higher function. Arch. Neurol. 1991;48(11):1178–1187.
    1. Schmahmann J.D. Dysmetria of thought: clinical consequences of cerebellar dysfunction on cognition and affect. Trends Cogn Sci. 1998;2(9):362–371.
    1. Andreasen N.C., O'Leary D.S., Cizadlo T., et al. Schizophrenia and cognitive dysmetria: a positron-emission tomography study of dysfunctional prefrontal-thalamic-cerebellar circuitry. Proc Natl Acad Sci U S A. 1996;93(18):9985–9990.
    1. Andreasen N.C., Nopoulos P., O’Leary D.S., Miller D.D., Wassink T., Flaum M. Defining the phenotype of schizophrenia: cognitive dysmetria and its neural mechanisms. Biological Psychiatry. 1999;46(7):908–920.
    1. Andreasen N.C. A unitary model of schizophrenia. Bleuler's “Fragmented Phrene” as schizencephaly. Archives of General Psychiatry. 1999;56(9):781. doi: 10.1001/archpsyc.56.9.781.
    1. Pinheiro A.P., Schwartze M., Kotz S.A. Cerebellar circuitry and auditory verbal hallucinations: An integrative synthesis and perspective. Neurosci Biobehav Rev. 2020;118:485–503. doi: 10.1016/j.neubiorev.2020.08.004.
    1. Allen P., Laroi F., McGuire P.K., Aleman A. The hallucinating brain: a review of structural and functional neuroimaging studies of hallucinations. Neurosci Biobehav Rev. 2008;32(1):175–191. doi: 10.1016/j.neubiorev.2007.07.012.
    1. Ćurčić-Blake B., Ford J.M., Hubl D., Orlov N.D., Sommer I.E., Waters F., Allen P., Jardri R., Woodruff P.W., David O., Mulert C., Woodward T.S., Aleman A. Interaction of language, auditory and memory brain networks in auditory verbal hallucinations. Prog Neurobiol. 2017;148:1–20. doi: 10.1016/j.pneurobio.2016.11.002.
    1. Alderson-Day B., McCarthy-Jones S., Fernyhough C. Hearing voices in the resting brain: A review of intrinsic functional connectivity research on auditory verbal hallucinations. Neurosci Biobehav Rev. 2015;55:78–87. doi: 10.1016/j.neubiorev.2015.04.016.
    1. James A., Hough M., James S., Burge L., Winmill L., Nijhawan S., Matthews P.M., Zarei M. Structural brain and neuropsychometric changes associated with pediatric bipolar disorder with psychosis. Bipolar Disord. 2011;13(1):16–27.
    1. Neves M.d.C., Duarte D.G., Albuquerque M.R., Nicolato R., Neves F.S., Souza-Duran F.L.d., Busatto G., Corrêa H. Neural correlates of hallucinations in bipolar disorder. Braz J Psychiatry. 2016;38(1):1–5. doi: 10.1590/1516-4446-2014-1640.
    1. Ekman C.J., Petrovic P., Johansson A.G., Sellgren C., Ingvar M., Landen M. A History of Psychosis in Bipolar Disorder is Associated With Gray Matter Volume Reduction. Schizophr Bull. 2017;43(1):99–107. doi: 10.1093/schbul/sbw080.
    1. Mørch-Johnsen L., Nerland S., Jørgensen K.N., Osnes K., Hartberg C.B., Andreassen O.A., Melle I., Nesvåg R., Agartz I. Cortical thickness abnormalities in bipolar disorder patients with a lifetime history of auditory hallucinations. Bipolar Disord. 2018;20(7):647–657. doi: 10.1111/bdi.12627.
    1. Zhuo C., Lin X., Wang C., Song X., Xu X., Li G., Xu Y., Tian H., Zhang Y., Wang W., Zhou C. Unified and disease specific alterations to brain structure in patients across six categories of mental disorders who experience own-thought auditory verbal hallucinations: A pilot study. Brain Res Bull. 2020;160:33–39. doi: 10.1016/j.brainresbull.2020.04.001.
    1. Okuneye V.T., Meda S., Pearlson G.D., Clementz B.A., Keshavan M.S., Tamminga C.A., Ivleva E., Sweeney J.A., Gershon E.S., Keedy S.K. Resting state auditory-language cortex connectivity is associated with hallucinations in clinical and biological subtypes of psychotic disorders. Neuroimage Clin. 2020;27:102358. doi: 10.1016/j.nicl.2020.102358.
    1. Qiu L., Ye J., Ji F., Li G., Li G., Ma X., Li R., Tian H., Wang L., Chen G., Xu Y., Wang W., Jiang D., Pan J., Zhuo C. Common and distinct global functional connectivity density alterations in patients with bipolar disorder with and without auditory verbal hallucination during major depressive episodes. Brain Imaging Behav. 2020;14(6):2724–2730. doi: 10.1007/s11682-019-00222-4.
    1. Baker J.T., Holmes A.J., Masters G.A., Yeo B.T.T., Krienen F., Buckner R.L., Öngür D. Disruption of cortical association networks in schizophrenia and psychotic bipolar disorder. JAMA Psychiatry. 2014;71(2):109. doi: 10.1001/jamapsychiatry.2013.3469.
    1. Shinn A.K., Roh Y.S., Ravichandran C.T., Baker J.T., Ongur D., Cohen B.M. Aberrant cerebellar connectivity in bipolar disorder with psychosis. Biol Psychiatry Cogn Neurosci Neuroimaging. 2017;2(5):438–448. doi: 10.1016/j.bpsc.2016.07.002.
    1. First M.B., Spitzer R.L., Gibbon M., Williams J.B.W. New York State Psychiatric Institute; Biometrics Research: 1995. Structured clinical interview for DSM-IV Axis I Disorders.
    1. Montgomery S.A., Åsberg M. A new depression scale designed to be sensitive to change. British Journal of Psychiatry. 1979;134(4):382–389.
    1. Kay S.R., Fiszbein A., Opler L.A. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bulletin. 1987;13(2):261–276.
    1. Parvizi J. Corticocentric myopia: old bias in new cognitive sciences. Trends Cogn Sci. 2009;13(8):354–359. doi: 10.1016/j.tics.2009.04.008.
    1. Phillips M.L., Travis M.J., Fagiolini A., Kupfer D.J. Medication effects in neuroimaging studies of bipolar disorder. Am J Psychiatry. 2008;165(3):313–320. doi: 10.1176/appi.ajp.2007.07071066.
    1. Holmes A.J., Hollinshead M.O., O’Keefe T.M., Petrov V.I., Fariello G.R., Wald L.L., Fischl B., Rosen B.R., Mair R.W., Roffman J.L., Smoller J.W., Buckner R.L. Brain Genomics Superstruct Project initial data release with structural, functional, and behavioral measures. Sci Data. 2015;2(1) doi: 10.1038/sdata.2015.31.
    1. Whitfield-Gabrieli S., Nieto-Castanon A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2012;2(3):125–141. doi: 10.1089/brain.2012.0073.
    1. Power J.D., Barnes K.A., Snyder A.Z., Schlaggar B.L., Petersen S.E. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage. 2011;59(3):2142–2154. doi: 10.1016/j.neuroimage.2011.10.018.
    1. Van Dijk K.R., Sabuncu M.R., Buckner R.L. The influence of head motion on intrinsic functional connectivity MRI. Neuroimage. 2012;59(1):431–438. doi: 10.1016/j.neuroimage.2011.07.044.
    1. Behzadi Y., Restom K., Liau J., Liu T.T. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage. 2007;37(1):90–101. doi: 10.1016/j.neuroimage.2007.04.042.
    1. Tzourio-Mazoyer N., Landeau B., Papathanassiou D., Crivello F., Etard O., Delcroix N., Mazoyer B., Joliot M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15(1):273–289. doi: 10.1006/nimg.2001.0978.
    1. McCarthy-Jones S., Trauer T., Mackinnon A., Sims E., Thomas N., Copolov D.L. A new phenomenological survey of auditory hallucinations: evidence for subtypes and implications for theory and practice. Schizophr Bull. 2014;40(1):231–235. doi: 10.1093/schbul/sbs156.
    1. Middleton F.A., Strick P.L. Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science. 1994;266(5184):458–461. doi: 10.1126/science.7939688.
    1. Buckner R.L., Krienen F.M., Castellanos A., Diaz J.C., Yeo B.T. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106(5):2322–2345. doi: 10.1152/jn.00339.2011.
    1. Baumann O., Borra R.J., Bower J.M., Cullen K.E., Habas C., Ivry R.B., Leggio M., Mattingley J.B., Molinari M., Moulton E.A., Paulin M.G., Pavlova M.A., Schmahmann J.D., Sokolov A.A. Consensus paper: the role of the cerebellum in perceptual processes. Cerebellum. 2015;14(2):197–220. doi: 10.1007/s12311-014-0627-7.
    1. Shinn A.K., Baker J.T., Lewandowski K.E., Ongur D., Cohen B.M. Aberrant cerebellar connectivity in motor and association networks in schizophrenia. Frontiers in human neuroscience. 2015;9:134. doi: 10.3389/fnhum.2015.00134.
    1. Brady R.O., Gonsalvez I., Lee I., Öngür D., Seidman L.J., Schmahmann J.D., Eack S.M., Keshavan M.S., Pascual-Leone A., Halko M.A. Cerebellar-Prefrontal Network Connectivity and Negative Symptoms in Schizophrenia. Am J Psychiatry. 2019;176(7):512–520. doi: 10.1176/appi.ajp.2018.18040429.
    1. Liu H.u., Fan G., Xu K.e., Wang F. Changes in cerebellar functional connectivity and anatomical connectivity in schizophrenia: a combined resting-state functional MRI and diffusion tensor imaging study. J Magn Reson Imaging. 2011;34(6):1430–1438. doi: 10.1002/jmri.v34.610.1002/jmri.22784.
    1. Ramnani N. The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci. 2006;7(7):511–522. doi: 10.1038/nrn1953.
    1. Repovs G., Csernansky J.G., Barch D.M. Brain network connectivity in individuals with schizophrenia and their siblings. Biol Psychiatry. 2011;69(10):967–973. doi: 10.1016/j.biopsych.2010.11.009.
    1. Collin G., Hulshoff Pol H.E., Haijma S.V., Cahn W., Kahn R.S., van den Heuvel M.P. Impaired cerebellar functional connectivity in schizophrenia patients and their healthy siblings. Front Psychiatry. 2011;2:73. doi: 10.3389/fpsyt.2011.00073.
    1. Chen Y.L., Tu P.C., Lee Y.C., Chen Y.S., Li C.T., Su T.P. Resting-state fMRI mapping of cerebellar functional dysconnections involving multiple large-scale networks in patients with schizophrenia. Schizophr Res. 2013;149(1–3):26–34. doi: 10.1016/j.schres.2013.05.029.
    1. Guo W., Liu F., Chen J., et al. Resting-state cerebellar-cerebral networks are differently affected in first-episode, drug-naive schizophrenia patients and unaffected siblings. Sci. Rep. 2015;5:17275. doi: 10.1038/srep17275.
    1. Wang H., Guo W., Liu F., et al. Patients with first-episode, drug-naive schizophrenia and subjects at ultra-high risk of psychosis shared increased cerebellar-default mode network connectivity at rest. Sci. Rep. 2016;6:26124. doi: 10.1038/srep26124.
    1. Bernard J.A., Orr J.M., Mittal V.A. Cerebello-thalamo-cortical networks predict positive symptom progression in individuals at ultra-high risk for psychosis. Neuroimage Clin. 2017;14:622–628. doi: 10.1016/j.nicl.2017.03.001.
    1. Guo W., Zhang F., Liu F., Chen J., Wu R., Chen D.Q., Zhang Z., Zhai J., Zhao J. Cerebellar abnormalities in first-episode, drug-naive schizophrenia at rest. Psychiatry Res Neuroimaging. 2018;276:73–79. doi: 10.1016/j.pscychresns.2018.03.010.
    1. Zhuo C., Wang C., Wang L., Guo X., Xu Q., Liu Y., Zhu J. Altered resting-state functional connectivity of the cerebellum in schizophrenia. Brain Imaging Behav. 2018;12(2):383–389. doi: 10.1007/s11682-017-9704-0.
    1. Ferri J., Ford J.M., Roach B.J., Turner J.A., van Erp T.G., Voyvodic J., Preda A., Belger A., Bustillo J., O'Leary D., Mueller B.A., Lim K.O., McEwen S.C., Calhoun V.D., Diaz M., Glover G., Greve D., Wible C.G., Vaidya J.G., Potkin S.G., Mathalon D.H. Resting-state thalamic dysconnectivity in schizophrenia and relationships with symptoms. Psychol Med. 2018;48(15):2492–2499. doi: 10.1017/S003329171800003X.
    1. Lee KH, Oh H, Suh JS, et al. Functional and Structural Connectivity of the Cerebellar Nuclei With the Striatum and Cerebral Cortex in First-Episode Psychosis. J Neuropsychiatry Clin Neurosci. Dec 18 2018:appineuropsych17110276. doi:10.1176/appi.neuropsych.17110276.
    1. Clos M., Diederen K.M.J., Meijering A.L., Sommer I.E., Eickhoff S.B. Aberrant connectivity of areas for decoding degraded speech in patients with auditory verbal hallucinations. Brain Struct. Funct. 2014;219(2):581–594. doi: 10.1007/s00429-013-0519-5.
    1. Chang X., Xi Y.-B., Cui L.-B., Wang H.-N., Sun J.-B., Zhu Y.-Q., Huang P., Collin G., Liu K., Xi M., Qi S., Tan Q.-R., Miao D.-M., Yin H. Distinct inter-hemispheric dysconnectivity in schizophrenia patients with and without auditory verbal hallucinations. Sci. Rep. 2015;5:11218. doi: 10.1038/srep11218.
    1. Mallikarjun P.K., Lalousis P.A., Dunne T.F., Heinze K., Reniers R.L., Broome M.R., Farmah B., Oyebode F., Wood S.J., Upthegrove R. Aberrant salience network functional connectivity in auditory verbal hallucinations: a first episode psychosis sample. Transl Psychiatry. 2018;8(1):69. doi: 10.1038/s41398-018-0118-6.
    1. Zhao Z., Li X., Feng G., et al. Altered Effective Connectivity in the Default Network of the Brains of First-Episode, Drug-Naive Schizophrenia Patients With Auditory Verbal Hallucinations. Frontiers in human neuroscience. 2018;12:456. doi: 10.3389/fnhum.2018.00456.
    1. International Schizophrenia Consortium, Purcell S.M., Wray N.R., et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature. 2009;460(7256):748–752. doi: 10.1038/nature08185.
    1. Itahashi T., Mimura M., Hasegawa S., Tani M., Kato N., Hashimoto R.I. Aberrant cerebellar-default-mode functional connectivity underlying auditory verbal hallucinations in schizophrenia revealed by multi-voxel pattern analysis of resting-state functional connectivity MRI data. Schizophr Res. 2018;197:607–608. doi: 10.1016/j.schres.2018.02.013.
    1. Chen X., Ji G.-J., Zhu C., Bai X., Wang L.u., He K., Gao Y., Tao L., Yu F., Tian Y., Wang K. Neural Correlates of Auditory Verbal Hallucinations in Schizophrenia and the Therapeutic Response to Theta-Burst Transcranial Magnetic Stimulation. Schizophr Bull. 2019;45(2):474–483. doi: 10.1093/schbul/sby054.
    1. Kim N.Y., Hsu J., Talmasov D., Joutsa J., Soussand L., Wu O., Rost N.S., Morenas-Rodríguez E., Martí-Fàbregas J., Pascual-Leone A., Corlett P.R., Fox M.D. Lesions causing hallucinations localize to one common brain network. Mol Psychiatry. 2021;26(4):1299–1309. doi: 10.1038/s41380-019-0565-3.
    1. Cierpka M., Wolf N.D., Kubera K.M., Schmitgen M.M., Vasic N., Frasch K., Wolf R.C. Cerebellar Contributions to Persistent Auditory Verbal Hallucinations in Patients with Schizophrenia. Cerebellum. 2017;16(5-6):964–972. doi: 10.1007/s12311-017-0874-5.
    1. Zmigrod L., Garrison J.R., Carr J., Simons J.S. The neural mechanisms of hallucinations: A quantitative meta-analysis of neuroimaging studies. Neurosci Biobehav Rev. 2016;69:113–123. doi: 10.1016/j.neubiorev.2016.05.037.
    1. Powers A.R., Mathys C., Corlett P.R. Pavlovian conditioning-induced hallucinations result from overweighting of perceptual priors. Science. 2017;357(6351):596–600. doi: 10.1126/science.aan3458.
    1. Lutterveld R.V., Diederen K.M., Otte W.M., Sommer I.E. Network analysis of auditory hallucinations in nonpsychotic individuals. Hum Brain Mapp. 2013;35(4):1436–1445. doi: 10.1002/hbm.22264.
    1. Makris N., Schlerf J.E., Hodge S.M., Haselgrove C., Albaugh M.D., Seidman L.J., Rauch S.L., Harris G., Biederman J., Caviness V.S., Kennedy D.N., Schmahmann J.D. MRI-based surface-assisted parcellation of human cerebellar cortex: an anatomically specified method with estimate of reliability. Neuroimage. 2005;25(4):1146–1160. doi: 10.1016/j.neuroimage.2004.12.056.
    1. Stoodley C.J., Schmahmann J.D. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage. 2009;44(2):489–501. doi: 10.1016/j.neuroimage.2008.08.039.
    1. Jardri R., Pouchet A., Pins D., Thomas P. Cortical activations during auditory verbal hallucinations in schizophrenia: a coordinate-based meta-analysis. Am J Psychiatry. 2010;168(1):73–81. doi: 10.1176/appi.ajp.2010.09101522.
    1. Kansal K., Yang Z., Fishman A.M., Sair H.I., Ying S.H., Jedynak B.M., Prince J.L., Onyike C.U. Structural cerebellar correlates of cognitive and motor dysfunctions in cerebellar degeneration. Brain. 2017;140(3):707–720. doi: 10.1093/brain/aww327.
    1. Gavrilescu M., Rossell S., Stuart G.W., Shea T.L., Innes-Brown H., Henshall K., McKay C., Sergejew A.A., Copolov D., Egan G.F. Reduced connectivity of the auditory cortex in patients with auditory hallucinations: a resting state functional magnetic resonance imaging study. Psychol Med. 2010;40(7):1149–1158. doi: 10.1017/S0033291709991632.
    1. Vercammen A., Knegtering H., den Boer J.A., Liemburg E.J., Aleman A. Auditory hallucinations in schizophrenia are associated with reduced functional connectivity of the temporo-parietal area. Biol Psychiatry. 2010;67(10):912–918. doi: 10.1016/j.biopsych.2009.11.017.
    1. Hoffman R.E., Fernandez T., Pittman B., Hampson M. Elevated functional connectivity along a corticostriatal loop and the mechanism of auditory/verbal hallucinations in patients with schizophrenia. Biol Psychiatry. 2011;69(5):407–414. doi: 10.1016/j.biopsych.2010.09.050.
    1. Sommer I.E., Clos M., Meijering A.L., Diederen K.M.J., Eickhoff S.B., Draganski B. Resting state functional connectivity in patients with chronic hallucinations. PLoS One. 2012;7(9):e43516. doi: 10.1371/journal.pone.004351610.1371/journal.pone.0043516.s001.
    1. Liemburg E.J., Vercammen A., Ter Horst G.J., Curcic-Blake B., Knegtering H., Aleman A. Abnormal connectivity between attentional, language and auditory networks in schizophrenia. Schizophr Res. 2012;135(1–3):15–22. doi: 10.1016/j.schres.2011.12.003.
    1. Schutte M.J L., Bohlken M.M., Collin G., Abramovic L., Boks M.P.M., Cahn W., Dauwan M., van Dellen E., van Haren N.E.M., Hugdahl K., Koops S., Mandl R.C.W., Sommer I.E.C. Sci Rep. 2021;11(1):1108. doi: 10.1038/s41598-020-80657-8.
    1. Shinn A.K., Baker J.T., Cohen B.M., Ongur D. Functional connectivity of left Heschl’s gyrus in vulnerability to auditory hallucinations in schizophrenia. Schizophr Res. 2013;143(2–3):260–268. doi: 10.1016/j.schres.2012.11.037.
    1. Oertel-Knochel V., Knochel C., Matura S., Prvulovic D., Linden D.E., van de Ven V. Reduced functional connectivity and asymmetry of the planum temporale in patients with schizophrenia and first-degree relatives. Schizophr Res. 2013;147(2–3):331–338. doi: 10.1016/j.schres.2013.04.024.
    1. Diederen K.M., Neggers S.F., de Weijer A.D., et al. Aberrant resting-state connectivity in non-psychotic individuals with auditory hallucinations. Psychol. Med. 2012;43(8):1685–1696. doi: 10.1017/S0033291712002541.
    1. Kompus K., Westerhausen R., Hugdahl K. The “paradoxical” engagement of the primary auditory cortex in patients with auditory verbal hallucinations: a meta-analysis of functional neuroimaging studies. Neuropsychologia. 2011;49(12):3361–3369. doi: 10.1016/j.neuropsychologia.2011.08.010.
    1. Modinos G., Costafreda S.G., van Tol M.J., McGuire P.K., Aleman A., Allen P. Neuroanatomy of auditory verbal hallucinations in schizophrenia: A quantitative meta-analysis of voxel-based morphometry studies. Cortex. 2012;49(4):1046–1055. doi: 10.1016/j.cortex.2012.01.009.
    1. Toh W.L., Thomas N., Hollander Y., Rossell S.L. On the phenomenology of auditory verbal hallucinations in affective and non-affective psychosis. Psychiatry Res. 2020;290:113147. doi: 10.1016/j.psychres.2020.113147.
    1. Brady Jr. R.O., Tandon N., Masters G.A., Margolis A., Cohen B.M., Keshavan M., Öngür D. Differential brain network activity across mood states in bipolar disorder. J Affect Disord. 2017;207:367–376. doi: 10.1016/j.jad.2016.09.041.
    1. Young R.C., Biggs J.T., Ziegler V.E., Meyer D.A. A rating scale for mania: reliability, validity and sensitivity. Br J Psychiatry. 1978;133:429–435.
    1. Zalesky A., Fornito A., Harding I.H., Cocchi L., Yücel M., Pantelis C., Bullmore E.T. Whole-brain anatomical networks: does the choice of nodes matter? Neuroimage. 2010;50(3):970–983. doi: 10.1016/j.neuroimage.2009.12.027.
    1. Craddock R.C., James G.A., Holtzheimer P.E., Hu X.P., Mayberg H.S. A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum Brain Mapp. 2012;33(8):1914–1928. doi: 10.1002/hbm.v33.810.1002/hbm.21333.

Source: PubMed

3
Prenumerera