Xanthine Oxidase Inhibitor, Allopurinol, Prevented Oxidative Stress, Fibrosis, and Myocardial Damage in Isoproterenol Induced Aged Rats

Md Abu Taher Sagor, Nabila Tabassum, Md Abdullah Potol, Md Ashraful Alam, Md Abu Taher Sagor, Nabila Tabassum, Md Abdullah Potol, Md Ashraful Alam

Abstract

We evaluated the preventive effect of allopurinol on isoproterenol (ISO) induced myocardial infarction in aged rats. Twelve- to fourteen-month-old male Long Evans rats were divided into three groups: control, ISO, and ISO + allopurinol. At the end of the study, all rats were sacrificed for blood and organ sample collection to evaluate biochemical parameters and oxidative stress markers analyses. Histopathological examinations were also conducted to assess inflammatory cell infiltration and fibrosis in heart and kidneys. Our investigation revealed that the levels of oxidative stress markers were significantly increased while the level of cellular antioxidants, catalase activity, and glutathione concentration in ISO induced rats decreased. Treatment with allopurinol to ISO induced rats prevented the elevated activities of AST, ALT, and ALP enzymes, and the levels of lipid peroxidation products and increased reduced glutathione concentration. ISO induced rats also showed massive inflammatory cells infiltration and fibrosis in heart and kidneys. Furthermore, allopurinol treatment prevented the inflammatory cells infiltration and fibrosis in ISO induced rats. In conclusion, the results of our study suggest that allopurinol treatment is capable of protecting heart of ISO induced myocardial infarction in rats probably by preventing oxidative stress, inflammation, and fibrosis.

Figures

Figure 1
Figure 1
Hematoxylin and Eosin staining showed inflammatory cell infiltration and necrosis in left ventricle of heart section of rats treated with ISO. Control rats showed normal architecture with very well-shaped cardiomyocytes in left ventricle of heart (a). ISO treatment increased necrosis to cardiomyocytes and the mononuclear inflammatory cells infiltration in left ventricle of heart (b) which was normalized by allopurinol treatment (c). Moreover control rats showed normal baseline collagen around cardiomyocytes (a) which was significantly increased in ISO treated rats (b). Allopurinol treatment further prevented the fibrosis in heart of ISO treated rats. Sirius red staining showed fibrosis (red color) in left ventricle of heart section of rats treated with ISO. (a, d) Control; (b, e) ISO; and (c, f) ISO + allopurinol, magnification 40x.
Figure 2
Figure 2
Control rats showed low amount of mast cells in LV of heart (a). However, ISO administration increased degranulated mast cell infiltration in LV of heart which was significantly reduced in allopurinol treated rats. Toluidine blue staining showed mast cells infiltration (deep blue dots) in heart of rats treated with ISO. (a) Control; (b), ISO; (c) ISO + allopurinol, magnification 40x.
Figure 3
Figure 3
Hematoxylin and Sosin staining showed inflammatory cell infiltration and necrosis in kidney section of rats treated with ISO. Sirius red staining showed fibrosis (red color) in kidney section of rats treated with ISO. (a, d) Control; (b, e) ISO; and (c, f) ISO + allopurinol, magnification 40x.
Figure 4
Figure 4
Prussian blue staining showed iron deposition in heart and kidney section of rats treated with ISO and allopurinol. (a, d) Control; (b, e) ISO; and (c, f) ISO + allopurinol, magnification 40x.

References

    1. Andrés E., Cordero A., Magán P., et al. Long-term mortality and hospital readmission after acute myocardial infarction: an eight-year follow-up study. Revista Espanola de Cardiologia. 2012;65(5):414–420. doi: 10.1016/j.recesp.2011.09.009.
    1. Roger V. L., Go A. S., Lloyd-Jones D. M., et al. Heart disease and stroke statistics—2011 update: a report from the American Heart Association. Circulation. 2011;123(4):e18–e209. doi: 10.1161/cir.0b013e3182009701.
    1. Hansen P. R. Role of neutrophils in myocardial ischemia and reperfusion. Circulation. 1995;91(6):1872–1885. doi: 10.1161/01.CIR.91.6.1872.
    1. Rathore N., John S., Kale M., Bhatnagar D. Lipid peroxidation and antioxidant enzymes in isoproterenol induced oxidative stress in rat tissues. Pharmacological Research. 1998;38(4):297–303. doi: 10.1006/phrs.1998.0365.
    1. Zaragoza C., Gomez-Guerrero C., Martin-Ventura J. L., et al. Animal models of cardiovascular diseases. Journal of Biomedicine and Biotechnology. 2011;2011:13. doi: 10.1155/2011/497841.497841
    1. Ou L., Li W., Liu Y., et al. Animal models of cardiac disease and stem cell therapy. Open Cardiovascular Medicine Journal. 2010;4(2):231–239. doi: 10.2174/1874192401004010231.
    1. Serra A. J., Santos M. H. H., Bocalini D. S., et al. Exercise training inhibits inflammatory cytokines and more than prevents myocardial dysfunction in rats with sustained β-adrenergic hyperactivity. Journal of Physiology. 2010;588(13):2431–2442. doi: 10.1113/jphysiol.2010.187310.
    1. Zhang J., Knapton A., Lipshultz S. E., Weaver J. L., Herman E. H. Isoproterenol-induced cardiotoxicity in sprague-dawley rats: correlation of reversible and irreversible myocardial injury with release of cardiac troponin T and roles of iNOS in myocardial injury. Toxicologic Pathology. 2008;36(2):277–278. doi: 10.1177/0192623307313010.
    1. Davel A. P., Brum P. C., Rossoni L. V. Isoproterenol induces vascular oxidative stress and endothelial dysfunction via a Giα-coupled β2-adrenoceptor signaling pathway. PLoS ONE. 2014;9(3) doi: 10.1371/journal.pone.0091877.e91877
    1. Díaz-Muñoz M., Álvarez-Pérez M. A., Yáñnez L., et al. Correlation between oxidative stress and alteration of intracellular calcium handling in isoproterenol-induced myocardial infarction. Molecular and Cellular Biochemistry. 2006;289(1-2):125–136. doi: 10.1007/s11010-006-9155-1.
    1. Rodrigo R., Libuy M., Feliú F., Hasson D. Oxidative stress-related biomarkers in essential hypertension and ischemia-reperfusion myocardial damage. Disease Markers. 2013;35(6):773–790. doi: 10.1155/2013/974358.
    1. Zweier J. L., Talukder M. A. H. The role of oxidants and free radicals in reperfusion injury. Cardiovascular Research. 2006;70(2):181–190. doi: 10.1016/j.cardiores.2006.02.025.
    1. Takimoto E., Kass D. A. Role of oxidative stress in cardiac hypertrophy and remodeling. Hypertension. 2007;49(2):241–248. doi: 10.1161/01.HYP.0000254415.31362.a7.
    1. Cappola T. P., Kass D. A., Nelson G. S., et al. Allopurinol improves myocardial efficiency in patients with idiopathic dilated cardiomyopathy. Circulation. 2001;104(20):2407–2411. doi: 10.1161/hc4501.098928.
    1. Engberding N., Spiekermann S., Schaefer A., et al. Allopurinol attenuates left ventricular remodeling and dysfunction after experimental myocardial infarction: a new action for an old drug? Circulation. 2004;110(15):2175–2179. doi: 10.1161/01.cir.0000144303.24894.1c.
    1. Minhas K. M., Saraiva R. M., Schuleri K. H., et al. Xanthine oxidoreductase inhibition causes reverse remodeling in rats with dilated cardiomyopathy. Circulation Research. 2006;98(2):271–279. doi: 10.1161/01.res.0000200181.59551.71.
    1. Niehaus W. G., Jr., Samuelsson B. Formation of malonaldehyde from phospholipid arachidonate during microsomal lipid peroxidation. European Journal of Biochemistry. 1968;6(1):126–130. doi: 10.1111/j.1432-1033.1968.tb00428.x.
    1. Tracey W. R., Tse J., Carter G. Lipopolysaccharide-induced changes in plasma nitrite and nitrate concentrations in rats and mice: pharmacological evaluation of nitric oxide synthase inhibitors. Journal of Pharmacology and Experimental Therapeutics. 1995;272(3):1011–1015.
    1. Witko-Sarsat V., Friedlander M., Capeillère-Blandin C., et al. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney International. 1996;49(5):1304–1313. doi: 10.1038/ki.1996.186.
    1. Tiwari B. K., Kumar D., Abidi A. B., Rizvi S. I. Efficacy of composite extract from leaves and fruits of medicinal plants used in traditional diabetic therapy against oxidative stress in alloxan-induced diabetic rats. ISRN Pharmacology. 2014;2014:7. doi: 10.1155/2014/608590.608590
    1. Khan R. A. Protective effects of Sonchus asper (L.) Hill, (Asteraceae) against CCl4-induced oxidative stress in the thyroid tissue of rats. BMC Complementary and Alternative Medicine. 2012;12(1, article 181) doi: 10.1186/1472-6882-12-181.
    1. Chance B., Maehly A. C. Assay of catalase and peroxidases. Methods in Enzymology. 1955;11:764–775. doi: 10.1016/s0076-6879(55)02300-8.
    1. Jollow D. J., Mitchell J. R., Zampaglione N., Gillette J. R. Bromobenzene induced liver necrosis. Protective role of glutathione and evidence for 3,4 bromobenzene oxide as the hepatotoxic metabolite. Pharmacology. 1974;11(3):151–169. doi: 10.1159/000136485.
    1. Vennila L., Pugalendi K. V. Protective effect of sesamol against myocardial infarction caused by isoproterenol in Wistar rats. Redox Report. 2010;15(1):36–42. doi: 10.1179/174329210X12650506623168.
    1. Patel V., Upaganlawar A., Zalawadia R., Balaraman R. Cardioprotective effect of melatonin against isoproterenol induced myocardial infarction in rats: a biochemical, electrocardiographic and histoarchitectural evaluation. European Journal of Pharmacology. 2010;644(1–3):160–168. doi: 10.1016/j.ejphar.2010.06.065.
    1. Singal P. K., Beamish R. E., Dhalla N. S. Potential oxidative pathways of catecholamines in the formation of lipid peroxides and genesis of heart disease. Advances in Experimental Medicine and Biology. 1983;161:391–401.
    1. Liaudet L., Calderari B., Pacher P. Pathophysiological mechanisms of catecholamine and cocaine-mediated cardiotoxicity. Heart Failure Reviews. 2014;19(6):815–824. doi: 10.1007/s10741-014-9418-y.
    1. Mladěnka P., Hrdina R., Bobrovová Z., et al. Cardiac biomarkers in a model of acute catecholamine cardiotoxicity. Human and Experimental Toxicology. 2009;28(10):631–640. doi: 10.1177/0960327109350665.
    1. Berry C. E., Hare J. M. Xanthine oxidoreductase and cardiovascular disease: molecular mechanisms and pathophysiological implications. Journal of Physiology. 2004;555(3):589–606. doi: 10.1113/jphysiol.2003.055913.
    1. Jia N., Dong P., Ye Y., Qian C., Dai Q. Allopurinol attenuates oxidative stress and cardiac fibrosis in angiotensin II-induced cardiac diastolic dysfunction. Cardiovascular Therapeutics. 2012;30(2):117–123. doi: 10.1111/j.1755-5922.2010.00243.x.
    1. Gao X., Xu Y., Xu B., et al. Allopurinol attenuates left ventricular dysfunction in rats with early stages of streptozotocin-induced diabetes. Diabetes/Metabolism Research and Reviews. 2012;28(5):409–417. doi: 10.1002/dmrr.2295.
    1. Li H., Yao W., Irwin M. G., et al. Adiponectin ameliorates hyperglycemia-induced cardiac hypertrophy and dysfunction by concomitantly activating Nrf2 and Brg1. Free Radical Biology and Medicine. 2015;84:311–321. doi: 10.1016/j.freeradbiomed.2015.03.007.
    1. Sabeena Farvin K. H., Anandan R., Kumar S. H. S., Shiny K. S., Sankar T. V., Thankappan T. K. Effect of squalene on tissue defense system in isoproterenol-induced myocardial infarction in rats. Pharmacological Research. 2004;50(3):231–236. doi: 10.1016/j.phrs.2004.03.004.
    1. Rosalki S. B., Roberts R., Katus H. A., Giannitsis E., Ladenson J. H., Apple F. S. Cardiac biomarkers for detection of myocardial infarction: perspectives from past to present. Clinical Chemistry. 2004;50(11):2205–2213. doi: 10.1373/clinchem.2004.041749.
    1. Wang S.-B., Tian S., Yang F., Yang H.-G., Yang X.-Y., Du G.-H. Cardioprotective effect of salvianolic acid A on isoproterenol-induced myocardial infarction in rats. European Journal of Pharmacology. 2009;615(1–3):125–132. doi: 10.1016/j.ejphar.2009.04.061.
    1. Mueen Ahmed K. K., Rana A. C., Dixit V. K. Effect of Calotropis procera latex on isoproterenol induced myocardial infarction in albino rats. Phytomedicine. 2004;11(4):327–330. doi: 10.1078/0944711041495146.
    1. Pinto V. D., Cutini G. J. S., Sartório C. L., Paigel A. S., Vassallo D. V., Stefanon I. Enhanced β-adrenergic response in rat papillary muscle by inhibition of inducible nitric oxide synthase after myocardial infarction. Acta Physiologica. 2007;190(2):111–117. doi: 10.1111/j.1748-1716.2007.01684.x.
    1. Li D., Qu Y., Tao L., et al. Inhibition of iNOS protects the aging heart against β-adrenergic receptor stimulation-induced cardiac dysfunction and myocardial ischemic injury. Journal of Surgical Research. 2006;131(1):64–72. doi: 10.1016/j.jss.2005.06.038.
    1. Wu J., Hecker J. G., Chiamvimonvat N. Antioxidant enzyme gene transfer for ischemic diseases. Advanced Drug Delivery Reviews. 2009;61(4):351–363. doi: 10.1016/j.addr.2009.01.005.
    1. Wattanapitayakul S. K., Bauer J. A. Oxidative pathways in cardiovascular disease: roles, mechanisms, and therapeutic implications. Pharmacology and Therapeutics. 2001;89(2):187–206. doi: 10.1016/s0163-7258(00)00114-5.
    1. Karthikeyan K., Bai B. R. S., Devaraj S. N. Cardioprotective effect of grape seed proanthocyanidins on isoproterenol-induced myocardial injury in rats. International Journal of Cardiology. 2007;115(3):326–333. doi: 10.1016/j.ijcard.2006.03.016.
    1. Rajadurai M., Prince P. S. M. Preventive effect of naringin on lipid peroxides and antioxidants in isoproterenol-induced cardiotoxicity in Wistar rats: biochemical and histopathological evidences. Toxicology. 2006;228(2-3):259–268. doi: 10.1016/j.tox.2006.09.005.
    1. Closa D., Folch-Puy E. Oxygen free radicals and the systemic inflammatory response. IUBMB Life. 2004;56(4):185–191. doi: 10.1080/15216540410001701642.
    1. Behr T. M., Wang X., Aiyar N., et al. Monocyte chemoattractant protein-1 is upregulated in rats with volume-overload congestive heart failure. Circulation. 2000;102(11):1315–1322. doi: 10.1161/01.CIR.102.11.1315.
    1. Nicoletti A., Heudes D., Mandet C., Hinglais N., Bariety J., Michel J.-B. Inflammatory cells and myocardial fibrosis: spatial and temporal distribution in renovascular hypertensive rats. Cardiovascular Research. 1996;32(6):1096–1107. doi: 10.1016/s0008-6363(96)00158-7.
    1. Hinglais N., Heudes D., Nicoletti A., et al. Colocalization of myocardial fibrosis and inflammatory cells in rats. Laboratory Investigation. 1994;70(2):286–294.
    1. Panizo A., Mindall F. J. P., Galindo M. F., Cenarruzabeitia E., Hernandez M., Diez J. Are mast cells involved in hypertensive heart disease? Journal of Hypertension. 1995;13(10):1201–1208. doi: 10.1097/00004872-199510000-00015.
    1. Shiota N., Rysä J., Kovanen P. T., Ruskoaho H., Kokkonen J. O., Lindstedt K. A. A role for cardiac mast cells in the pathogenesis of hypertensive heart disease. Journal of Hypertension. 2003;21(10):1935–1944. doi: 10.1097/00004872-200310000-00022.
    1. Kasal D. A. B., Neves M. F., Oigman W., Mandarim-de-Lacerda C. A. Allopurinol attenuates L-NAME induced cardiomyopathy comparable to blockade of angiotensin receptor. Histology and Histopathology. 2008;23(10):1241–1248.

Source: PubMed

3
Prenumerera