Helicobacter pylori Eradication Causes Perturbation of the Human Gut Microbiome in Young Adults

Theresa Wan-Chen Yap, Han-Ming Gan, Yin-Peng Lee, Alex Hwong-Ruey Leow, Ahmad Najib Azmi, Fritz Francois, Guillermo I Perez-Perez, Mun-Fai Loke, Khean-Lee Goh, Jamuna Vadivelu, Theresa Wan-Chen Yap, Han-Ming Gan, Yin-Peng Lee, Alex Hwong-Ruey Leow, Ahmad Najib Azmi, Fritz Francois, Guillermo I Perez-Perez, Mun-Fai Loke, Khean-Lee Goh, Jamuna Vadivelu

Abstract

Background: Accumulating evidence shows that Helicobacter pylori protects against some metabolic and immunological diseases in which the development of these diseases coincide with temporal or permanent dysbiosis. The aim of this study was to assess the effect of H. pylori eradication on the human gut microbiome.

Methods: As part of the currently on-going ESSAY (Eradication Study in Stable Adults/Youths) study, we collected stool samples from 17 H. pylori-positive young adult (18-30 years-old) volunteers. The same cohort was followed up 6, 12 and 18 months-post H. pylori eradication. The impact of H. pylori on the human gut microbiome pre- and post-eradication was investigated using high throughput 16S rRNA gene (V3-V4 region) sequencing using the Illumina Miseq followed by data analysis using Qiime pipeline.

Results: We compared the composition and diversity of bacterial communities in the fecal microbiome of the H. pylori-positive volunteers, before and after H. pylori eradication therapy. The 16S rRNA gene was sequenced at an average of 150,000-170,000 reads/sample. The microbial diversity were similar pre- and post-H. pylori eradication with no significant differences in richness and evenness of bacterial species. Despite that the general profile of the gut microbiome was similar pre- and post-eradication, some changes in the bacterial communities at the phylum and genus levels were notable, particularly the decrease in relative abundance of Bacterioidetes and corresponding increase in Firmicutes after H. pylori eradication. The significant increase of short-chain fatty acids (SCFA)-producing bacteria genera could also be associated with increased risk of metabolic disorders.

Conclusions: Our preliminary stool metagenomics study shows that eradication of H. pylori caused perturbation of the gut microbiome and may indirectly affect the health of human. Clinicians should be aware of the effect of broad spectrum antibiotics used in H. pylori eradication regimen and be cautious in the clinical management of H. pylori infection, particularly in immunocompromised patients.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1. Alpha diversity analysis comparing between…
Fig 1. Alpha diversity analysis comparing between baseline and 6-months post-H.
pylori eradication. Rarefraction curve for A. chao1, B. observed species, C. PD whole tree, and D. the Shannon index generated from alpha diversity analysis.
Fig 2. Alpha diversity analysis comparing between…
Fig 2. Alpha diversity analysis comparing between baseline and 12-months post-H. pylori eradication.
Rarefraction curve for A. chao1, B. observed species, C. PD whole tree, and D. the Shannon index generated from alpha diversity analysis.
Fig 3. Alpha diversity analysis comparing between…
Fig 3. Alpha diversity analysis comparing between baseline and 18-months post-H. pylori eradication.
Rarefraction curve for A. chao1, B. observed species, C. PD whole tree, and D. the Shannon index generated from alpha diversity analysis.
Fig 4. Relative abundance of phyla.
Fig 4. Relative abundance of phyla.
Relative abundance of phyla at A. Baseline, B. 6 months-post eradication, C. 12 months-post eradication, and D. 18 months-post eradication.
Fig 5. Relative abundance of genera.
Fig 5. Relative abundance of genera.
Comparison of the relative abundance of genera between A. Baseline vs. 6 months-post eradication, B. Baseline vs. 12 months-post eradication, and C. Baseline vs. 18 months-post eradication.

References

    1. Savage DC. Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol. 1977;31:107–133.
    1. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, et al. Evolution of mammals and their gut microbes. Science. 2008;320(5883):1647–1651. 10.1126/science.1155725
    1. Hooper LV, Midtvedt T, Gordon JI. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr. 2002;22:283–307.
    1. O'Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006;7(7):688–693.
    1. Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI. Molecular analysis of commensal host-microbial relationships in the intestine. Science. 2001;291(5505):881–884.
    1. Rawls JF, Mahowald MA, Ley RE, Gordon JI. Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell. 2006;127(2):423–433.
    1. Li M, Wang B, Zhang M, Rantalainen M, Wang S, Zhou H, et al. Symbiotic gut microbes modulate human metabolic phenotypes. Proc Natl Acad Sci U S A. 2008;105(6):2117–2122. 10.1073/pnas.0712038105
    1. Cantarel BL, Lombard V, Henrissat B. Complex carbohydrate utilization by the healthy human microbiome. PLoS One. 2012;7(6):e28742 10.1371/journal.pone.0028742
    1. Cani PD, Delzenne NM. The role of the gut microbiota in energy metabolism and metabolic disease. Curr Pharm Des. 2009;15(13):1546–1558.
    1. Harris K, Kassis A, Major G, Chou CJ. Is the gut microbiota a new factor contributing to obesity and its metabolic disorders? J Obes. 2012;2012:14 10.1155/2012/879151
    1. Tilg H, Kaser A. Gut microbiome, obesity, and metabolic dysfunction. J Clinc Invest. 2011;121(6):2126–2132.
    1. Cani PD, Delzenne NM. Gut microflora as a target for energy and metabolic homeostasis. Curr Opin Clin Nutr Metab Care. 2007;10(6):729–734.
    1. Sekirov I, Russell SL, Antunes LCM, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010;90(3):859–904. 10.1152/physrev.00045.2009
    1. Endt K, Stecher B, Chaffron S, Slack E, Tchitchek N, Benecke A, et al. The microbiota mediates pathogen clearance from the gut lumen after non-typhoidal Salmonella diarrhea. PLoS Pathog. 2010;6(9):e1001097 10.1371/journal.ppat.1001097
    1. Buffie CG, Pamer EG. Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rev Immunol. 2013;13(11):790–801. 10.1038/nri3535
    1. Kelly D, Conway S, Aminov R. Commensal gut bacteria: mechanisms of immune modulation. Trends Immunol. 2005;26(6):326–333.
    1. DiBaise JK, Frank DN, Mathur R. Impact of the gut microbiota on the development of obesity: current concepts. Am J Gastroenterol Suppl. 2012;1(1):22–27.
    1. Tremaroli V, Backhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489(7415):242–249. 10.1038/nature11552
    1. Sun J, Chang EB. Exploring gut microbes in human health and disease: Pushing the envelope. Genes Dis. 2014;1(2):132–139.
    1. Clyne M, Dolan B, Reeves EP. Bacterial factors that mediate colonization of the stomach and virulence of Helicobacter pylori. FEMS Microbiol Lett. 2007;268(2):135–143.
    1. Kusters JG, van Vliet AH, Kuipers EJ. Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev. 2006;19(3):449–490.
    1. Linz B, Balloux F, Moodley Y, Manica A, Liu H, Roumagnac P, et al. An African origin for the intimate association between humans and Helicobacter pylori. Nature. 2007;445(7130):915–918.
    1. Francois F, Roper J, Joseph N, Pei Z, Chhada A, Shak JR, et al. The effect of H. pylori eradication on meal-associated changes in plasma ghrelin and leptin. BMC Gastroenterol. 2011;11:37. doi: 1471-230X-11-37 [pii] 10.1186/1471-230X-11-37
    1. Nwokolo CU, Freshwater DA, O'Hare P, Randeva HS. Plasma ghrelin following cure of Helicobacter pylori. Gut. 2003;52(5):637–640.
    1. Osawa H. Ghrelin and Helicobacter pylori infection. World J Gastroenterol. 2008;14(41):6327–6333.
    1. Chen Y, Blaser MJ. Helicobacter pylori colonization is inversely associated with childhood asthma. J Infect Dis. 2008;198(4):553–560. 10.1086/590158
    1. Amberbir A, Medhin G, Erku W, Alem A, Simms R, Robinson K, et al. Effects of Helicobacter pylori, geohelminth infection and selected commensal bacteria on the risk of allergic disease and sensitization in 3-year-old Ethiopian children. Clin Exp Allergy. 2011;41(10):1422–1430. 10.1111/j.1365-2222.2011.03831.x
    1. Amnon S, Robert MG. Helicobacter pylori is a risk factor for colonic neoplasms. Am J Gastroenterol. 2012;108(2):208–215. 10.1038/ajg.2012.407
    1. Yap TW-C, Leow AH- R, Azmi AN, Francois F, Perez-Perez GI, Blaser MJ, et al. Changes in metabolic hormones in Malaysian young adults following Helicobacter pylori eradication. PLoS One. 2015;10(8):e0135771 10.1371/journal.pone.0135771
    1. Peterson J, Garges S, Giovanni M, McInnes P, Wang L, Schloss JA, et al. The NIH Human Microbiome Project. Genome Res. 2009;19(12):2317–2323. 10.1101/gr.096651.109
    1. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41(1):e1 10.1093/nar/gks808
    1. Bartram AK, Lynch MD, Stearns JC, Moreno-Hagelsieb G, Neufeld JD. Generation of multimillion-sequence 16S rRNA gene libraries from complex microbial communities by assembling paired-end illumina reads. Appl Environ Microbiol2011;77(11):3846–3852.
    1. Available: .
    1. Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics. 2014;30(5):614–620. 10.1093/bioinformatics/btt593
    1. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nature Methods. 2010;7(5):335–336. 10.1038/nmeth.f.303
    1. McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2012;6(3):610–618. 10.1038/ismej.2011.139
    1. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26(19):2460–2461. 10.1093/bioinformatics/btq461
    1. Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics. 2010;26(2):266–267. 10.1093/bioinformatics/btp636
    1. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72(7):5069–5072.
    1. Price MN, Dehal PS, Arkin AP. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5(3):e9490 10.1371/journal.pone.0009490
    1. Lozupone C, Knight R. UniFrac: a New Phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005;71(12):8228–8235.
    1. Vazquez-Baeza Y, Pirrung M, Gonzalez A, Knight R. EMPeror: a tool for visualizing high-throughput microbial community data. GigaScience. 2013;2(1):16 10.1186/2047-217X-2-16
    1. Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A. 2005;102(31):11070–11075.
    1. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. Diversity of the human intestinal microbial flora. Science. 2005;308(5728):1635–1638.
    1. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65. 10.1038/nature08821
    1. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial community variation in human body habitats across space and time. Science. 2009;326(5960):1694–1697. 10.1126/science.1177486
    1. Lender N, Talley NJ, Enck P, Haag S, Zipfel S, Morrison M, et al. Associations between Helicobacter pylori and obesity—an ecological study. Aliment Pharmacol Ther. 2014;40(1):24–31. 10.1111/apt.12790
    1. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444(7122):1022–1023.
    1. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–1131.
    1. Van Eldere J, Celis P, De Pauw G, Lesaffre E, Eyssen H. Tauroconjugation of cholic acid stimulates 7 alpha-dehydroxylation by fecal bacteria. Appl Environ Microbiol. 1996;62(2):656–661.
    1. Martin FP, Dumas ME, Wang Y, Legido-Quigley C, Yap IK, Tang H, et al. A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model. Mol Syst Biol. 2007;3:112
    1. Jakobsson HE, Jernberg C, Andersson AF, Sjolund-Karlsson M, Jansson JK, Engstrand L. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS One. 2010;5(3):e9836 10.1371/journal.pone.0009836
    1. Peters DH, Clissold SP. Clarithromycin. A review of its antimicrobial activity, pharmacokinetic properties and therapeutic potential. Drugs. 1992;44(1):117–164.
    1. Elliott TSJ, Stone JW. Review article: metronidazole and the anaerobic gut flora. Aliment Pharmacol Ther. 1990;4(3):227–238.
    1. Dubourg G, Lagier JC, Armougom F, Robert C, Audoly G, Papazian L, et al. High-level colonisation of the human gut by Verrucomicrobia following broad-spectrum antibiotic treatment. Int J Antimicrob Agents. 2013;41(2):149–155. 10.1016/j.ijantimicag.2012.10.012
    1. Schauer DB. Enterohepatic Helicobacter Species In: Mobley HLT, Mendz GL, Hazell SL, editors. Helicobacter pylori: Physiology and Genetics. Washington DC: ASM Press; 2001.
    1. Ménard A, Buissonnière A, Prouzet-Mauléon V, Sifré E, Mégraud F. The GyrA encoded gene: a pertinent marker for the phylogenetic revision of Helicobacter genus. Syst Appl Microbiol. 2016.
    1. Kwok T, Backert S, Schwarz H, Berger J, Meyer TF. Specific entry of Helicobacter pylori into cultured gastric epithelial cells via a zipper-like mechanism. Infect Immun. 2002;70(4):2108–2120.
    1. Amieva MR, Salama NR, Tompkins LS, Falkow S. Helicobacter pylori enter and survive within multivesicular vacuoles of epithelial cells. Cell Microbiol. 2002;4(10):677–690.
    1. Wang YH, Wu JJ, Lei HY. The autophagic induction in Helicobacter pylori-infected macrophage. Exp Biol Med (Maywood). 2009;234(2):171–180.
    1. Tan S, Tompkins LS, Amieva MR. Helicobacter pylori usurps cell polarity to turn the cell surface into a replicative niche. PLoS Pathog. 2009;5(5):e1000407 10.1371/journal.ppat.1000407
    1. Wang YH, Gorvel JP, Chu YT, Wu JJ, Lei HY. Helicobacter pylori impairs murine dendritic cell responses to infection. PLoS One. 2010;5(5):e10844 10.1371/journal.pone.0010844
    1. Chu YT, Wang YH, Wu JJ, Lei HY. Invasion and multiplication of Helicobacter pylori in gastric epithelial cells and implications for antibiotic resistance. Infect Immun. 2010;78(10):4157–4165. 10.1128/IAI.00524-10
    1. Dubois A, Boren T. Helicobacter pylori is invasive and it may be a facultative intracellular organism. Cell Microbiol. 2007;9(5):1108–1116.
    1. Petersen AM, Krogfelt KA. Helicobacter pylori: an invading microorganism? A review. FEMS Immunol Med Microbiol. 2003;36(3):117–126.
    1. Tan GMY, Looi CY, Fernandez KC, Vadivelu J, Loke MF, Wong WF. Suppression of cell division-associated genes by Helicobacter pylori attenuates proliferation of RAW264.7 monocytic macrophage cells. Sci Rep. 2015;5 10.1038/srep11046
    1. Weingart V, Rüssmann H, Koletzko S, Weingart J, Höchter W, Sackmann M. Sensitivity of a novel stool antigen test for detection of Helicobacter pylori in adult outpatients before and after eradication therapy. J Clin Microbiol. 2004;42(3):1319–1321.
    1. Nilius M, Strohle A, Bode G, Malfertheiner P. Coccoid like forms (CLF) of Helicobacter pylori. Enzyme activity and antigenicity. Zentralbl Bakteriol. 1993;280(1–2):259–272.
    1. Hua J, Ho B. Is the coccoid form of Helicobacter pylori viable? Microbios. 1996;87(351):103–12.
    1. Malaty HM. Epidemiology of Helicobacter pylori infection In: Sutton P, Mitchell HM, editors. Helicobacter pylori in the 21st century. Wallingford: CABI; 2010. pp. 1–12.
    1. Finegold SM, Lawson PA, Vaisanen ML, Molitoris DR, Song Y, Liu C, et al. Anaerofustis stercorihominis gen. nov., sp. nov., from human feces. Anaerobe. 2004;10(1):41–45.
    1. Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ. The role of butyrate on colonic function. Aliment Pharmacol Ther. 2008;27(2):104–119.
    1. Karlsson F, Tremaroli V, Nielsen J, Backhed F. Assessing the human gut microbiota in metabolic diseases. Diabetes. 2013;62(10):3341–3349. 10.2337/db13-0844
    1. Szylit O, Andrieux C. Physiological and pathophysiological effects of carbohydrate fermentation. World Rev Nutr Diet. 1993;74:88–122.
    1. Cummings JH, Macfarlane GT. Colonic microflora: nutrition and health. Nutrition. 1997;13(5):476–478.
    1. Watanabe Y, Nagai F, Morotomi M. Characterization of Phascolarctobacterium succinatutens sp. nov., an asaccharolytic, succinate-utilizing bacterium isolated from human feces. Appl Environ Microbiol. 2012;78(2):511–518. 10.1128/AEM.06035-11
    1. Hosseini E, Grootaert C, Verstraete W, Van de Wiele T. Propionate as a health-promoting microbial metabolite in the human gut. Nutr Rev. 2011;69(5):245–258. 10.1111/j.1753-4887.2011.00388.x
    1. Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-Protein–coupled receptor FFAR2. Diabetes. 2012;61(2):364–371. 10.2337/db11-1019
    1. Cherbut C, Ferrier L, Rozé C, Anini Y, Blottière H, Lecannu G, et al. Short-chain fatty acids modify colonic motility through nerves and polypeptide YY release in the rat. Am J Physiol. 1998;275(6 Pt 1):G1415–22.
    1. Anini Y, Fu-Cheng X, Cuber JC, Kervran A, Chariot J, Rozé C. Comparison of the postprandial release of peptide YY and proglucagon-derived peptides in the rat. Pflügers Arch. 1999;438(3):299–306.
    1. Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, et al. The orphan G Protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem. 2003;278(13):11312–11319.
    1. Le Poul E, Loison C, Struyf S, Springael J-Y, Lannoy V, Decobecq M-E, et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem. 2003;278(28):25481–25489.
    1. Chambers ES, Viardot A, Psichas A, Morrison DJ, Murphy KG, Zac-Varghese SEK, et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut. 2014. 10.1136/gutjnl-2014-307913
    1. Erejuwa OO, Sulaiman SA, Ab Wahab MS. Modulation of gut microbiota in the management of metabolic disorders: the prospects and challenges. Int J Mol Sci. 2014;15(3):4158–4188. 10.3390/ijms15034158
    1. Chassard C, Scott KP, Marquet P, Martin JC, Del'homme C, Dapoigny M, et al. Assessment of metabolic diversity within the intestinal microbiota from healthy humans using combined molecular and cultural approaches. FEMS Microbiol Ecol. 2008;66(3):496–504. 10.1111/j.1574-6941.2008.00595.x
    1. Ramirez-Farias C, Slezak K, Fuller Z, Duncan A, Holtrop G, Louis P. Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. British J Nutr. 2009;101(04):541–550.
    1. Rainey FA. Family VIII. Ruminococcaceae fam. nov. Bergey’s Manual of Systematic Bacteriology. 2009;3:1016–1043.
    1. Rainey FA. Family V. Lachnospiraceae fam. nov. Bergey's Manual of Systematic Bacteriology. 2009;3:921.
    1. Liu C, Finegold SM, Song Y, Lawson PA. Reclassification of Clostridium coccoides, Ruminococcus hansenii, Ruminococcus hydrogenotrophicus, Ruminococcus luti, Ruminococcus productus and Ruminococcus schinkii as Blautia coccoides gen. nov., comb. nov., Blautia hansenii comb. nov., Blautia hydrogenotrophica comb. nov., Blautia luti comb. nov., Blautia producta comb. nov., Blautia schinkii comb. nov. and description of Blautia wexlerae sp. nov., isolated from human faeces. Int J Syst Evol Microbiol. 2008;58(8):1896–1902.
    1. Hugenholtz P, Tyson GW, Webb RI, Wagner AM, Blackall LL. Investigation of candidate division TM7, a recently recognized major lineage of the domain bacteria with no known pure-culture representatives. Appl Environ Microbiol. 2001;67(1):411–419.
    1. Ouverney CC, Armitage GC, Relman DA. Single-cell enumeration of an uncultivated TM7 cubgroup in the human subgingival crevice. Appl Environ Microbiol. 2003;69(10):6294–6298.
    1. Kumar PS, Griffen AL, Barton JA, Paster BJ, Moeschberger ML, Leys EJ. New bacterial species associated with chronic periodontitis.J Dent Res. 2003;82(5):338–344.
    1. Brinig MM, Lepp PW, Ouverney CC, Armitage GC, Relman DA. Prevalence of bacteria of division TM7 in human subgingival plaque and their association with disease. Appl Environ Microbiol. 2003;69(3):1687–1694.
    1. Kuehbacher T, Rehman A, Lepage P, Hellmig S, Fölsch UR, Schreiber S, et al. Intestinal TM7 bacterial phylogenies in active inflammatory bowel disease. J Med Microbiol. 2008;57(12):1569–1576.
    1. Dinis JM, Barton DE, Ghadiri J, Surendar D, Reddy K, Velasquez F, et al. In search of an uncultured human-associated TM7 bacterium in the environment. PLoS One. 2011;6(6):1–8.
    1. Pei Z, Bini EJ, Yang L, Zhou M, Francois F, Blaser MJ. Bacterial biota in the human distal esophagus. Proc Natl Acad Sci U S A. 2004;101(12):4250–4255.
    1. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner ACR, Yu W-H, et al. The human oral microbiome. J Bacteriol. 2010;192(19):5002–5017. 10.1128/JB.00542-10

Source: PubMed

3
Prenumerera