Rapid and Sensitive Detection of anti-SARS-CoV-2 IgG, Using Lanthanide-Doped Nanoparticles-Based Lateral Flow Immunoassay

Zhenhua Chen, Zhigao Zhang, Xiangming Zhai, Yongyin Li, Li Lin, Hui Zhao, Lun Bian, Peng Li, Lei Yu, Yingsong Wu, Guanfeng Lin, Zhenhua Chen, Zhigao Zhang, Xiangming Zhai, Yongyin Li, Li Lin, Hui Zhao, Lun Bian, Peng Li, Lei Yu, Yingsong Wu, Guanfeng Lin

Abstract

The outbreak of 2019 coronavirus disease (COVID-19) has been a challenge for hospital laboratories because of the huge number of samples that must be tested for the presence of the causative pathogen, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Simple and rapid immunodiagnostic methods are urgently needed to identify positive cases. Here we report the development of a rapid and sensitive lateral flow immunoassay (LFIA) that uses lanthanide-doped polysterene nanoparticles (LNPs) to detect anti-SARV-CoV-2 IgG in human serum. A recombinant nucleocapsid phosphoprotein of SARS-CoV-2 was dispensed onto a nitrocellulose membrane to capture specific IgG. Mouse anti-human IgG antibody was labeled with self-assembled LNPs that served as a fluorescent reporter. A 100-μL aliquot of serum samples (1:1000 dilution) was used for this assay and the whole detection process took 10 min. The results of the validation experiment met the requirements for clinical diagnostic reagents. A value of 0.0666 was defined as the cutoff value by assaying 51 normal samples. We tested 7 samples that were positive by reverse-transcription (RT-)PCR and 12 that were negative but clinically suspicious for the presence of anti-SARS-CoV-2 IgG. One of the negative samples was determined to be SARS-CoV-2 IgG positive, while the results for the other samples were consistent with those obtained by RT-PCR. Thus, this assay can achieve rapid and sensitive detection of anti-SARS-CoV-2 IgG in human serum and allow positive identification in suspicious cases; it can also be useful for monitoring the progression COVID-19 and evaluating patients' response to treatment.

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
Design and fabrication of the developed assay. (A) Lateral flow test strip. (B) Assay.
Figure 2
Figure 2
Physical properties of LNPs and functionalized LNP probe: (A) absorption and emission spectra, (B) size distribution of naked and conjugated LNPs, and (C) zeta potential distribution.
Figure 3
Figure 3
Optimization of immunoreaction time.
Figure 4
Figure 4
Test results for 58 serum samples, including 51 normal and 7 positive samples. [Symbol legend: (*) P< 0.05, (****) P < 0.0001 (one-way analysis of variance and Fisher’s least significant difference test).]

References

    1. Li Q.; Guan X.; Wu P.; Wang X.; Zhou L.; Tong Y.; Ren R.; Leung K. S. M.; Lau E. H. Y.; Wong J. Y. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N. Engl. J. Med. 2020, 382, 1199.10.1056/NEJMoa2001316.
    1. Zhou P.; Yang X.-L.; Wang X.-G.; Hu B.; Zhang L.; Zhang W.; Si H.-R.; Zhu Y.; Li B.; Huang C.-L. A Pneumonia Outbreak Associated with a New Coronavirus of Probable Bat Origin. Nature 2020, 579, 270.10.1038/s41586-020-2012-7.
    1. Guan W.; Ni Z.; Hu Y.; Liang W.; Ou C.; He J.; Liu L.; Shan; H; Lei C.; Hui D. S. C. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708.10.1056/NEJMoa2002032.
    1. Yang Y.; Lu Q.; Liu M.; Wang Y.; Zhang A.; Jalali N.; Dean N.; Longini I.; Halloran M. E.; Xu B.; et al.Epidemiological and Clinical Features of the 2019 Novel Coronavirus Outbreak in China. medRxiv 2020, 10.1101/2020.02.10.20021675.
    1. Chu D. K W; Pan Y.; Cheng S. M S; Hui K. P Y; Krishnan P.; Liu Y.; Ng D. Y M; Wan C. K C; Yang P.; Wang Q.; Peiris M.; Poon L. L M Molecular Diagnosis of a Novel Coronavirus (2019-NCoV) Causing an Outbreak of Pneumonia. Clin. Chem. 2020, 66, 549.10.1093/clinchem/hvaa029.
    1. Wang M.; Wu Q.; Xu W.; Qiao B.; Wang J.; Zheng H.; Jiang S.; Mei J.; Wu Z.; Deng Y.; et al.Clinical Diagnosis of 8274 Samples with 2019-Novel Coronavirus in Wuhan. medRxiv 2020, 10.1101/2020.02.12.20022327.
    1. Ai J.-W.; Zhang H.-C.; Xu T.; Wu J.; Zhu M.; Yu Y.-Q.; Zhang H.-Y.; Shen Z.; Li Y.; Zhou X.; et al.Optimizing Diagnostic Strategy for Novel Coronavirus Pneumonia, a Multi-Center Study in Eastern China. medRxiv 2020, 10.1101/2020.02.13.20022673.
    1. Xie X.; Zhong Z.; Zhao W.; Zheng C.; Wang F.; Liu J. Chest CT for Typical 2019-NCoV Pneumonia: Relationship to Negative RT-PCR Testing. Radiology 2020, 200343.10.1148/radiol.2020200343.
    1. Ou L.; Lv Q.; Wu C.; Hao H.; Zheng Y.; Jiang Y. Development of a Lateral Flow Immunochromatographic Assay for Rapid Detection of Mycoplasma Pneumoniae-Specific IgM in Human Serum Specimens. J. Microbiol. Methods 2016, 124, 35.10.1016/j.mimet.2016.03.006.
    1. Song C.; Liu J.; Li J.; Liu Q. Dual FITC Lateral Flow Immunoassay for Sensitive Detection of Escherichia Coli O157:H7 in Food Samples. Biosens. Bioelectron. 2016, 85, 734.10.1016/j.bios.2016.05.057.
    1. Swanson C.; D’Andrea A. Lateral Flow Assay with Near-Infrared Dye for Multiplex Detection. Clin. Chem. 2013, 59 (4), 641–648. 10.1373/clinchem.2012.200360.
    1. Cui H.; Song W.; Cao Z.; Lu J. Simultaneous and Sensitive Detection of Dual DNA Targets via Quantum Dot-Assembled Amplification Labels. Luminescence 2016, 31 (1), 281–287. 10.1002/bio.2959.
    1. Liang R.-L.; Xu X.-P.; Liu T.-C.; Zhou J.-W.; Wang X.-G.; Ren Z.-Q.; Hao F.; Wu Y.-S. Rapid and Sensitive Lateral Flow Immunoassay Method for Determining Alpha Fetoprotein in Serum Using Europium (III) Chelate Microparticles-Based Lateral Flow Test Strips. Anal. Chim. Acta 2015, 891, 277.10.1016/j.aca.2015.07.053.
    1. Liao T.; Yuan F.; Shi C.; He C.-X.; Li Z. Lanthanide Chelate-Encapsulated Polystyrene Nanoparticles for Rapid and Quantitative Immunochromatographic Assay of Procalcitonin. RSC Adv. 2016, 6 (105), 103463–103470. 10.1039/C6RA23816E.
    1. Trivedi S. U.; Miao C.; Sanchez J. E.; Caidi H.; Tamin A.; Haynes L.; Thornburg N. J.. Development and Evaluation of a Multiplexed Immunoassay for Simultaneous Detection of Serum IgG Antibodies to Six Human Coronaviruses. Sci. Rep. 2019, 10.1038/s41598-018-37747-5.
    1. Yasmon A.; Ibrahim F.; Bela B.; Sjahrurachman A.. Potential Cross-Reactivity of Severe Acute Respiratory Syndrome-Associated Coronavirus (SARS-CoV) Nucleocapsid (N)-Based IgG ELISA Assay for Plasma Samples from HIV-1 Positive Intravenous Drug Users (IDUs). Acta Med. Indones 2012.
    1. Xie L.; Liu Y.; Fan B.; Xiao Y.; Tian Q.; Chen L.; Zhao H.; Chen W.. Dynamic Changes of Serum SARS-Coronavirus IgG, Pulmonary Function and Radiography in Patients Recovering from SARS after Hospital Discharge. Respir. Res. 2005, 10.1186/1465-9921-6-5.
    1. Zhu N.; Zhang D.; Wang W.; Li X.; Yang B.; Song J.; Zhao X.; Huang B.; Shi W.; Lu R. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727.10.1056/NEJMoa2001017.
    1. Tsang K.; Zhong N. S. SARS: Pharmacotherapy. Respirology 2003, 8, S25.10.1046/j.1440-1843.2003.00525.x.
    1. Chen Z.; Li P.; Zhang Z.; Zhai X.; Liang J.; Chen Q.; Li K.; Lin G.; Liu T.; Wu Y. Ultrasensitive Sensor Using Quantum Dots-Doped Polystyrene Nanospheres for Clinical Diagnostics of Low-Volume Serum Samples. Anal. Chem. 2019, 91 (9), 5777–5785. 10.1021/acs.analchem.9b00010.
    1. Chen Z.; Liang R.; Guo X.; Liang J.; Deng Q.; Li M.; An T.; Liu T.; Wu Y. Simultaneous Quantitation of Cytokeratin-19 Fragment and Carcinoembryonic Antigen in Human Serum via Quantum Dot-Doped Nanoparticles. Biosens. Bioelectron. 2017, 91, 60–65. 10.1016/j.bios.2016.12.036.
    1. Aikawa T.; Mizuno A.; Kohri M.; Taniguchi T.; Kishikawa K.; Nakahira T. Polystyrene Latex Particles Containing Europium Complexes Prepared by Miniemulsion Polymerization Using Bovine Serum Albumin as a Surfactant for Biochemical Diagnosis. Colloids Surf., B 2016, 145, 152–159. 10.1016/j.colsurfb.2016.04.055.

Source: PubMed

3
Prenumerera