Decrypting noncoding RNA interactions, structures, and functional networks

Muller Fabbri, Leonard Girnita, Gabriele Varani, George A Calin, Muller Fabbri, Leonard Girnita, Gabriele Varani, George A Calin

Abstract

The world of noncoding RNAs (ncRNAs) is composed of an enormous and growing number of transcripts, ranging in length from tens of bases to tens of kilobases, involved in all biological processes and altered in expression and/or function in many types of human disorders. The premise of this review is the concept that ncRNAs, like many large proteins, have a multidomain architecture that organizes them spatially and functionally. As ncRNAs are beginning to be imprecisely classified into functional families, we review here how their structural properties might inform their functions with focus on structural architecture-function relationships. We will describe the properties of "interactor elements" (IEs) involved in direct physical interaction with nucleic acids, proteins, or lipids and of "structural elements" (SEs) directing their wiring within the "ncRNA interactor networks" through the emergence of secondary and/or tertiary structures. We suggest that spectrums of "letters" (ncRNA elements) are assembled into "words" (ncRNA domains) that are further organized into "phrases" (complete ncRNA structures) with functional meaning (signaling output) through complex "sentences" (the ncRNA interactor networks). This semiotic analogy can guide the exploitation of ncRNAs as new therapeutic targets through the development of IE-blockers and/or SE-lockers that will change the interactor partners' spectrum of proteins, RNAs, DNAs, or lipids and consequently influence disease phenotypes.

© 2019 Fabbri et al.; Published by Cold Spring Harbor Laboratory Press.

Figures

Figure 1.
Figure 1.
Examples of interactor elements (IEs) and structural elements (SEs) in ncRNAs. (A) The IEs from the miR-15a/miR-16 cluster target the proapoptotic oncogene BCL2. When this miRNA cluster is down-regulated in human cancer cells, the BCL2 protein is overexpressed and can be targeted by the antiapoptotic small molecule venetoclax (Croce and Reed 2016). (B) The processing of another member of the miR-16 family, miR-195, is regulated by a direct interaction with the ultraconserved ncRNA uc.283. When this lncRNA is overexpressed in human cancer due to promoter hypomethylation, this interaction prevents DROSHA cropping of the mir-195 primary transcript, leading to down-regulation of the mature miR-195, a new mechanism of tumor-suppressor microRNA inactivation (Liz et al. 2014). (C) LINC01139 (LINK-A) is the first lncRNA known to interact with lipids, specifically with PIP3, facilitating AKT activation and consequent resistance to AKT inhibitors (Lin et al. 2017). (PH-domain) Pleckstrin homology domain. (D) CCAT2 harbors a conserved SE, within which a SNP alters the secondary structure of the lncRNA so that the CCAT2 alleles bind to the CFIm splicing complex with distinct affinities. The cancer risk G allele induces the oncogenic GAC glutaminase-C isoform that causes colorectal cancer progression (Redis et al. 2016).
Figure 2.
Figure 2.
The analogy between the natural language grammar and the ncRNA structure grammar. (A) The elements of the ncRNA language grammar. A schematic view of IEs, SEs, structural domains of a ncRNA, and the noncoding RNA interactor network (NIN) composed by the ncRNA, interactor RNAs (such as miRNAs), interactor proteins (such as P1), interactor DNA elements, and interactor lipids (such as PIP3). Each ncRNA can contain multiple structural domains (here we show three for simplicity): one or multiple IEs and/or one or multiple SEs. These elements can be targeted by IE-blockers (IEBs), which release a specific interactor molecule (either DNAs, RNAs, proteins or lipids), and SE-lockers (SELs), which lock the lncRNA structure in a specific conformation favoring specific interactions with multiple molecules. A new type of therapy based on the correction of various interconnected genetic alterations that occur in the complex NINs by targeting the IEs can be envisaged, because these are docking sites for multiple types of molecules (DNA, RNA, proteins, and lipids) and/or the SEs, that directly affects the conformation of a lncRNA and indirectly the functional interactions with interactor molecules. (B) A comparison between the natural language and ncRNA language grammars. The various elements of the ncRNA language grammar are assembled under a “merge” (combine) function: The IEs and SEs from a lncRNA are combined during evolution by multiple rounds of merge (here, steps 1–6). (S) Subject; (NP) noun phrase; (VP) verb phrase; (V) verb.

References

    1. Aboul-ela F. 2010. Strategies for the design of RNA-binding small molecules. Future Med Chem 2: 93–119. 10.4155/fmc.09.149
    1. Ambros V. 2003. MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell 113: 673–676. 10.1016/S0092-8674(03)00428-8
    1. Auyeung VC, Ulitsky I, McGeary SE, Bartel DP. 2013. Beyond secondary structure: Primary-sequence determinants license pri-miRNA hairpins for processing. Cell 152: 844–858. 10.1016/j.cell.2013.01.031
    1. Bai Y, Tambe A, Zhou K, Doudna JA. 2014. RNA-guided assembly of Rev-RRE nuclear export complexes. eLife 3: e03656 10.7554/eLife.03656
    1. Bal E, Park HS, Belaid-Choucair Z, Kayserili H, Naville M, Madrange M, Chiticariu E, Hadj-Rabia S, Cagnard N, Kuonen F, et al. 2017. Mutations in ACTRT1 and its enhancer RNA elements lead to aberrant activation of Hedgehog signaling in inherited and sporadic basal cell carcinomas. Nat Med 23: 1226–1233. 10.1038/nm.4368
    1. Bartel DP. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281–297. 10.1016/S0092-8674(04)00045-5
    1. Bartel DP. 2009. MicroRNAs: target recognition and regulatory functions. Cell 136: 215–233. 10.1016/j.cell.2009.01.002
    1. Bartel DP. 2018. Metazoan microRNAs. Cell 173: 20–51. 10.1016/j.cell.2018.03.006
    1. Batey RT, Gilbert SD, Montange RK. 2004. Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine. Nature 432: 411–415. 10.1038/nature03037
    1. Bejerano G, Pheasant M, Makunin I, Stephen S, Kent WJ, Mattick JS, Haussler D. 2004. Ultraconserved elements in the human genome. Science 304: 1321–1325. 10.1126/science.1098119
    1. Bellucci M, Agostini F, Masin M, Tartaglia GG. 2011. Predicting protein associations with long noncoding RNAs. Nat Methods 8: 444–445. 10.1038/nmeth.1611
    1. Berkhout B, van Wamel JL. 2000. The leader of the HIV-1 RNA genome forms a compactly folded tertiary structure. RNA 6: 282–295. 10.1017/S1355838200991684
    1. Blount KF, Breaker RR. 2006. Riboswitches as antibacterial drug targets. Nat Biotechnol 24: 1558–1564. 10.1038/nbt1268
    1. Blythe AJ, Fox AH, Bond CS. 2016. The ins and outs of lncRNA structure: how, why and what comes next? Biochim Biophys Acta 1859: 46–58. 10.1016/j.bbagrm.2015.08.009
    1. Brown JA, Bulkley D, Wang J, Valenstein ML, Yario TA, Steitz TA, Steitz JA. 2014. Structural insights into the stabilization of MALAT1 noncoding RNA by a bipartite triple helix. Nat Struct Mol Biol 21: 633–640. 10.1038/nsmb.2844
    1. Bullrich F, Fujii H, Calin G, Mabuchi H, Negrini M, Pekarsky Y, Rassenti L, Alder H, Reed JC, Keating MJ, et al. 2001. Characterization of the 13q14 tumor suppressor locus in CLL: identification of ALT1, an alternative splice variant of the LEU2 gene. Cancer Res 61: 6640–6648.
    1. Calin GA, Croce CM. 2006. Genomics of chronic lymphocytic leukemia microRNAs as new players with clinical significance. Semin Oncol 33: 167–173. 10.1053/j.seminoncol.2006.01.010
    1. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, et al. 2002. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci 99: 15524–15529. 10.1073/pnas.242606799
    1. Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE, Iorio MV, Visone R, Sever NI, Fabbri M, et al. 2005. A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353: 1793–1801. 10.1056/NEJMoa050995
    1. Calin GA, Liu CG, Ferracin M, Hyslop T, Spizzo R, Sevignani C, Fabbri M, Cimmino A, Lee EJ, Wojcik SE, et al. 2007. Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. Cancer Cell 12: 215–229. 10.1016/j.ccr.2007.07.027
    1. Cao C, Zhang T, Zhang D, Xie L, Zou X, Lei L, Wu D, Liu L. 2017. The long non-coding RNA, SNHG6-003, functions as a competing endogenous RNA to promote the progression of hepatocellular carcinoma. Oncogene 36: 1112–1122. 10.1038/onc.2016.278
    1. Carlevaro-Fita J, Johnson R. 2019. Global positioning system: understanding long noncoding RNAs through subcellular localization. Mol Cell 73: 869–883. 10.1016/j.molcel.2019.02.008
    1. Carlson PD, Evans ME, Yu AM, Strobel EJ, Lucks JB. 2018. SnapShot: RNA structure probing technologies. Cell 175: 600–600.e1. 10.1016/j.cell.2018.09.024
    1. Cassago A, Ferreira AP, Ferreira IM, Fornezari C, Gomes ER, Greene KS, Pereira HM, Garratt RC, Dias SM, Ambrosio AL. 2012. Mitochondrial localization and structure-based phosphate activation mechanism of glutaminase C with implications for cancer metabolism. Proc Natl Acad Sci 109: 1092–1097. 10.1073/pnas.1112495109
    1. Castellanos-Rubio A, Fernandez-Jimenez N, Kratchmarov R, Luo X, Bhagat G, Green PH, Schneider R, Kiledjian M, Bilbao JR, Ghosh S. 2016. A long noncoding RNA associated with susceptibility to celiac disease. Science 352: 91–95. 10.1126/science.aad0467
    1. Cech TR, Steitz JA. 2014. The noncoding RNA revolution: trashing old rules to forge new ones. Cell 157: 77–94. 10.1016/j.cell.2014.03.008
    1. Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, Tramontano A, Bozzoni I. 2011. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147: 358–369. 10.1016/j.cell.2011.09.028
    1. Challagundla KB, Wise PM, Neviani P, Chava H, Murtadha M, Xu T, Kennedy R, Ivan C, Zhang X, Vannini I, et al. 2015. Exosome-mediated transfer of microRNAs within the tumor microenvironment and neuroblastoma resistance to chemotherapy. J Natl Cancer Inst 107: djv135 10.1093/jnci/djv135
    1. Chaluvally-Raghavan P, Jeong KJ, Pradeep S, Silva AM, Yu S, Liu W, Moss T, Rodriguez-Aguayo C, Zhang D, Ram P, et al. 2016. Direct upregulation of STAT3 by microRNA-551b-3p deregulates growth and metastasis of ovarian cancer. Cell Rep 15: 1493–1504. 10.1016/j.celrep.2016.04.034
    1. Chang TC, Pertea M, Lee S, Salzberg SL, Mendell JT. 2015. Genome-wide annotation of microRNA primary transcript structures reveals novel regulatory mechanisms. Genome Res 25: 1401–1409. 10.1101/gr.193607.115
    1. Chen Y, Yang F, Zubovic L, Pavelitz T, Yang W, Godin K, Walker M, Zheng S, Macchi P, Varani G. 2016. Targeted inhibition of oncogenic miR-21 maturation with designed RNA-binding proteins. Nat Chem Biol 12: 717–723. 10.1038/nchembio.2128
    1. Cheng Y, Chang Q, Zheng B, Xu J, Li H, Wang R. 2019. LncRNA XIST promotes the epithelial to mesenchymal transition of retinoblastoma via sponging miR-101. Eur J Pharmacol 843: 210–216. 10.1016/j.ejphar.2018.11.028
    1. Chillon I, Pyle AM. 2016. Inverted repeat Alu elements in the human lincRNA-p21 adopt a conserved secondary structure that regulates RNA function. Nucleic Acids Res 44: 9462–9471. 10.1093/nar/gkw599
    1. Chirayil S, Chirayil R, Luebke KJ. 2009. Discovering ligands for a microRNA precursor with peptoid microarrays. Nucleic Acids Res 37: 5486–5497. 10.1093/nar/gkp549
    1. Chomsky N. 2005. Three factors in language design. Linguist Inq 36: 1–22. 10.1162/0024389052993655
    1. Chomsky N. 2017. The language capacity: architecture and evolution. Psychon Bull Rev 24: 200–203. 10.3758/s13423-016-1078-6
    1. Chu C, Spitale RC, Chang HY. 2015. Technologies to probe functions and mechanisms of long noncoding RNAs. Nat Struct Mol Biol 22: 29–35. 10.1038/nsmb.2921
    1. Cifuentes-Rojas C, Hernandez AJ, Sarma K, Lee JT. 2014. Regulatory interactions between RNA and Polycomb repressive complex 2. Mol Cell 55: 171–185. 10.1016/j.molcel.2014.05.009
    1. Corbo C, Orrù S, Salvatore F. 2013. SRp20: an overview of its role in human diseases. Biochem Biophys Res Commun 436: 1–5. 10.1016/j.bbrc.2013.05.027
    1. Croce CM, Reed JC. 2016. Finally, an apoptosis-targeting therapeutic for cancer. Cancer Res 76: 5914–5920. 10.1158/0008-5472.CAN-16-1248
    1. Dąbrowska E. 2015. What exactly is universal grammar, and has anyone seen it? Front Psychol 6: 852 10.3389/fpsyg.2015.00852
    1. Davidovich C, Cech TR. 2015. The recruitment of chromatin modifiers by long noncoding RNAs: lessons from PRC2. RNA 21: 2007–2022. 10.1261/rna.053918.115
    1. Davidovich C, Zheng L, Goodrich KJ, Cech TR. 2013. Promiscuous RNA binding by Polycomb repressive complex 2. Nat Struct Mol Biol 20: 1250–1257. 10.1038/nsmb.2679
    1. Davidovich C, Wang X, Cifuentes-Rojas C, Goodrich KJ, Gooding AR, Lee JT, Cech TR. 2015. Toward a consensus on the binding specificity and promiscuity of PRC2 for RNA. Mol Cell 57: 552–558. 10.1016/j.molcel.2014.12.017
    1. Davis MP, Carrieri C, Saini HK, van Dongen S, Leonardi T, Bussotti G, Monahan JM, Auchynnikava T, Bitetti A, Rappsilber J, et al. 2017. Transposon-driven transcription is a conserved feature of vertebrate spermatogenesis and transcript evolution. EMBO Rep 18: 1231–1247. 10.15252/embr.201744059
    1. Donlic A, Morgan BS, Xu JL, Liu A, Roble C Jr, Hargrove AE. 2018. Discovery of small molecule ligands for MALAT1 by tuning an RNA-binding scaffold. Angew Chem Int Ed Engl 57: 13242–13247. 10.1002/anie.201808823
    1. Dragomir MP, Knutsen E, Calin GA. 2018. SnapShot: unconventional miRNA functions. Cell 174: 1038–1038.e1. 10.1016/j.cell.2018.07.040
    1. Dreyfuss G, Matunis MJ, Pinol-Roma S, Burd CG. 1993. hnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem 62: 289–321. 10.1146/annurev.bi.62.070193.001445
    1. Eiring AM, Harb JG, Neviani P, Garton C, Oaks JJ, Spizzo R, Liu S, Schwind S, Santhanam R, Hickey CJ, et al. 2010. miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell 140: 652–665. 10.1016/j.cell.2010.01.007
    1. Esteller M. 2011. Non-coding RNAs in human disease. Nat Rev Genet 12: 861–874. 10.1038/nrg3074
    1. Ezkurdia I, Juan D, Rodriguez JM, Frankish A, Diekhans M, Harrow J, Vazquez J, Valencia A, Tress ML. 2014. Multiple evidence strands suggest that there may be as few as 19,000 human protein-coding genes. Hum Mol Genet 23: 5866–5878. 10.1093/hmg/ddu309
    1. Fabbri M, Paone A, Calore F, Galli R, Gaudio E, Santhanam R, Lovat F, Fadda P, Mao C, Nuovo GJ, et al. 2012. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci 109: E2110–E2116. 10.1073/pnas.1209414109
    1. Ferdin J, Nishida N, Wu X, Nicoloso MS, Shah MY, Devlin C, Ling H, Shimizu M, Kumar K, Cortez MA, et al. 2013. HINCUTs in cancer: hypoxia-induced noncoding ultraconserved transcripts. Cell Death Differ 20: 1675–1687. 10.1038/cdd.2013.119
    1. Ferreira HJ, Davalos V, de Moura MC, Soler M, Perez-Salvia M, Bueno-Costa A, Setien F, Moran S, Villanueva A, Esteller M. 2018. Circular RNA CpG island hypermethylation-associated silencing in human cancer. Oncotarget 9: 29208–29219. 10.18632/oncotarget.25673
    1. Filipowicz W, Bhattacharyya SN, Sonenberg N. 2008. Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? Nat Rev Genet 9: 102–114. 10.1038/nrg2290
    1. Gallego J, Varani G. 2001. Targeting RNA with small-molecule drugs: therapeutic promise and chemical challenges. Acc Chem Res 34: 836–843. 10.1021/ar000118k
    1. Gilam A, Edry L, Mamluk-Morag E, Bar-Ilan D, Avivi C, Golan D, Laitman Y, Barshack I, Friedman E, Shomron N. 2013. Involvement of IGF-1R regulation by miR-515-5p modifies breast cancer risk among BRCA1 carriers. Breast Cancer Res Treat 138: 753–760. 10.1007/s10549-013-2502-5
    1. Guan L, Disney MD. 2012. Recent advances in developing small molecules targeting RNA. ACS Chem Biol 7: 73–86. 10.1021/cb200447r
    1. Guil S, Soler M, Portela A, Carrere J, Fonalleras E, Gomez A, Villanueva A, Esteller M. 2012. Intronic RNAs mediate EZH2 regulation of epigenetic targets. Nat Struct Mol Biol 19: 664–670. 10.1038/nsmb.2315
    1. Gumireddy K, Young DD, Xiong X, Hogenesch JB, Huang Q, Deiters A. 2008. Small-molecule inhibitors of microRNA miR-21 function. Angew Chem Int Ed Engl 47: 7482–7484. 10.1002/anie.200801555
    1. Guttman M, Rinn JL. 2012. Modular regulatory principles of large non-coding RNAs. Nature 482: 339–346. 10.1038/nature10887
    1. Hauser MD, Chomsky N, Fitch WT. 2002. The faculty of language: What is it, who has it, and how did it evolve? Science 298: 1569–1579. 10.1126/science.298.5598.1569
    1. Haussecker D, Huang Y, Lau A, Parameswaran P, Fire AZ, Kay MA. 2010. Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA 16: 673–695. 10.1261/rna.2000810
    1. Hawkes EJ, Hennelly SP, Novikova IV, Irwin JA, Dean C, Sanbonmatsu KY. 2016. COOLAIR antisense RNAs form evolutionarily conserved elaborate secondary structures. Cell Rep 16: 3087–3096. 10.1016/j.celrep.2016.08.045
    1. Helder S, Blythe AJ, Bond CS, Mackay JP. 2016. Determinants of affinity and specificity in RNA-binding proteins. Curr Opin Struct Biol 38: 83–91. 10.1016/j.sbi.2016.05.005
    1. Hon CC, Ramilowski JA, Harshbarger J, Bertin N, Rackham OJ, Gough J, Denisenko E, Schmeier S, Poulsen TM, Severin J, et al. 2017. An atlas of human long non-coding RNAs with accurate 5′ ends. Nature 543: 199–204. 10.1038/nature21374
    1. Hosono Y, Niknafs YS, Prensner JR, Iyer MK, Dhanasekaran SM, Mehra R, Pitchiaya S, Tien J, Escara-Wilke J, Poliakov A, et al. 2017. Oncogenic role of THOR, a conserved cancer/testis long non-coding RNA. Cell 171: 1559–1572.e20. 10.1016/j.cell.2017.11.040
    1. Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S, McLaren K, Matthews L, et al. 2013. The zebrafish reference genome sequence and its relationship to the human genome. Nature 496: 498–503. 10.1038/nature12111
    1. Hurst LD, Smith NG. 1999. Molecular evolutionary evidence that H19 mRNA is functional. Trends Genet 15: 134–135. 10.1016/S0168-9525(99)01696-0
    1. Hwang HW, Wentzel EA, Mendell JT. 2007. A hexanucleotide element directs microRNA nuclear import. Science 315: 97–100. 10.1126/science.1136235
    1. Ilik IA, Quinn JJ, Georgiev P, Tavares-Cadete F, Maticzka D, Toscano S, Wan Y, Spitale RC, Luscombe N, Backofen R, et al. 2013. Tandem stem-loops in roX RNAs act together to mediate X chromosome dosage compensation in Drosophila. Mol Cell 51: 156–173. 10.1016/j.molcel.2013.07.001
    1. Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y, Barrette TR, Prensner JR, Evans JR, Zhao S, et al. 2015. The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 47: 199–208. 10.1038/ng.3192
    1. Juan V, Crain C, Wilson C. 2000. Evidence for evolutionarily conserved secondary structure in the H19 tumor suppressor RNA. Nucleic Acids Res 28: 1221–1227. 10.1093/nar/28.5.1221
    1. Kapranov K, Willingham AT, Gingeras TR. 2007. Genome-wide transcription and the implications for genomic organization. Nat Rev Genet 8: 413–423. 10.1038/nrg2083
    1. Kleaveland B, Shi CY, Stefano J, Bartel DP. 2018. A network of noncoding regulatory RNAs acts in the mammalian brain. Cell 174: 350–362.e17. 10.1016/j.cell.2018.05.022
    1. Klein U, Lia M, Crespo M, Siegel R, Shen Q, Mo T, Ambesi-Impiombato A, Califano A, Migliazza A, Bhagat G, et al. 2010. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell 17: 28–40. 10.1016/j.ccr.2009.11.019
    1. Króliczewski J, Sobolewska A, Lejnowski D, Collawn JF, Bartoszewski R. 2018. microRNA single polynucleotide polymorphism influences on microRNA biogenesis and mRNA target specificity. Gene 640: 66–72. 10.1016/j.gene.2017.10.021
    1. Kwok CK, Ding Y, Tang Y, Assmann SM, Bevilacqua PC. 2013. Determination of in vivo RNA structure in low-abundance transcripts. Nat Commun 4: 2971 10.1038/ncomms3971
    1. Le A, Lane AN, Hamaker M, Bose S, Gouw A, Barbi J, Tsukamoto T, Rojas CJ, Slusher BS, Zhang H, et al. 2012. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab 15: 110–121. 10.1016/j.cmet.2011.12.009
    1. Leamy KA, Assmann SM, Mathews DH, Bevilacqua PC. 2016. Bridging the gap between in vitro and in vivo RNA folding. Q Rev Biophys 49: e10 10.1017/S003358351600007X
    1. Lee FCY, Ule J. 2018. Advances in CLIP technologies for studies of protein–RNA interactions. Mol Cell 69: 354–369. 10.1016/j.molcel.2018.01.005
    1. Lee YS, Shibata Y, Malhotra A, Dutta A. 2009. A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev 23: 2639–2649. 10.1101/gad.1837609
    1. Lien EC, Dibble CC, Toker A. 2017. PI3K signaling in cancer: beyond AKT. Curr Opin Cell Biol 45: 62–71. 10.1016/j.ceb.2017.02.007
    1. Lin A, Hu Q, Li C, Xing Z, Ma G, Wang C, Li J, Ye Y, Yao J, Liang K, et al. 2017. The LINK-A lncRNA interacts with PtdIns(3,4,5)P3 to hyperactivate AKT and confer resistance to AKT inhibitors. Nat Cell Biol 19: 238–251. 10.1038/ncb3473
    1. Lin J, Wen Y, He S, Yang X, Zhang H, Zhu H. 2019. Pipelines for cross-species and genome-wide prediction of long noncoding RNA binding. Nat Protoc 14: 795–818. 10.1038/s41596-018-0115-5
    1. Ling H, Fabbri M, Calin GA. 2013. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov 12: 847–865. 10.1038/nrd4140
    1. Ling H, Vincent K, Pichler M, Fodde R, Berindan-Neagoe I, Slack FJ, Calin GA. 2015. Junk DNA and the long non-coding RNA twist in cancer genetics. Oncogene 34: 5003–5011. 10.1038/onc.2014.456
    1. Liu F, Somarowthu S, Pyle AM. 2017a. Visualizing the secondary and tertiary architectural domains of lncRNA RepA. Nat Chem Biol 13: 282–289. 10.1038/nchembio.2272
    1. Liu N, Zhou KI, Parisien M, Dai Q, Diatchenko L, Pan T. 2017b. N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein. Nucleic Acids Res 45: 6051–6063. 10.1093/nar/gkx141
    1. Liz J, Portela A, Soler M, Gómez A, Ling H, Michlewski G, Calin GA, Guil S, Esteller M. 2014. Regulation of pri-miRNA processing by a long noncoding RNA transcribed from an ultraconserved region. Mol Cell 55: 138–147. 10.1016/j.molcel.2014.05.005
    1. Long Y, Wang X, Youmans DT, Cech TR. 2017. How do lncRNAs regulate transcription? Sci Adv 3: eaao2110 10.1126/sciadv.aao2110
    1. Lu K, Heng X, Garyu L, Monti S, Garcia EL, Kharytonchyk S, Dorjsuren B, Kulandaivel G, Jones S, Hiremath A, et al. 2011. NMR detection of structures in the HIV-1 5′-leader RNA that regulate genome packaging. Science 334: 242–245. 10.1126/science.1210460
    1. Lu ZP, Zhang QC, Lee B, Flynn RA, Smith MA, Robinson JT, Davidovich C, Gooding AR, Goodrich KJ, Mattick JS, et al. 2016. RNA duplex map in living cells reveals higher-order transcriptome structure. Cell 165: 1267–1279. 10.1016/j.cell.2016.04.028
    1. Mahmoudi S, Henriksson S, Corcoran M, Méndez-Vidal C, Wiman KG, Farnebo M. 2009. Wrap53, a natural p53 antisense transcript required for p53 induction upon DNA damage. Mol Cell 33: 462–471. 10.1016/j.molcel.2009.01.028
    1. Mahmoudi S, Henriksson S, Farnebo L, Roberg K, Farnebo M. 2011. WRAP53 promotes cancer cell survival and is a potential target for cancer therapy. Cell Death Dis 2: e114 10.1038/cddis.2010.90
    1. Margueron R, Reinberg D. 2011. The Polycomb complex PRC2 and its mark in life. Nature 469: 343–349. 10.1038/nature09784
    1. Marín-Béjar O, Mas AM, González J, Martinez D, Athie A, Morales X, Galduroz M, Raimondi I, Grossi E, Guo S, et al. 2017. The human lncRNA LINC-PINT inhibits tumor cell invasion through a highly conserved sequence element. Genome Biol 18: 202 10.1186/s13059-017-1331-y
    1. Masamha CP, Xia Z, Yang J, Albrecht TR, Li M, Shyu AB, Li W, Wagner EJ. 2014. CFIm25 links alternative polyadenylation to glioblastoma tumour suppression. Nature 510: 412–416. 10.1038/nature13261
    1. Matsui M, Corey DR. 2017. Non-coding RNAs as drug targets. Nat Rev Drug Discov 16: 167–179. 10.1038/nrd.2016.117
    1. McHugh CA, Chen CK, Chow A, Surka CF, Tran C, McDonel P, Pandya-Jones A, Blanco M, Burghard C, Moradian A, et al. 2015. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 521: 232–236. 10.1038/nature14443
    1. Monroig-Bosque PDC, Shah MY, Fu X, Fuentes-Mattei E, Ling H, Ivan C, Nouraee N, Huang B, Chen L, Pileczki V, et al. 2018. OncomiR-10b hijacks the small molecule inhibitor linifanib in human cancers. Sci Rep 8: 13106 10.1038/s41598-018-30989-3
    1. Mustoe AM, Busan S, Rice GM, Hajdin CE, Peterson BK, Ruda VM, Kubica N, Nutiu R, Baryza JL, Weeks KM. 2018. Pervasive regulatory functions of mRNA structure revealed by high-resolution shape probing. Cell 173: 181–195.e18. 10.1016/j.cell.2018.02.034
    1. Necsulea A, Soumillon M, Warnefors M, Liechti A, Daish T, Zeller U, Baker JC, Grützner F, Kaessmann H. 2014. The evolution of lncRNA repertoires and expression patterns in tetrapods. Nature 505: 635–640. 10.1038/nature12943
    1. Nicoloso MS, Sun H, Spizzo R, Kim H, Wickramasinghe P, Shimizu M, Wojcik SE, Ferdin J, Kunej T, Xiao L, et al. 2010. Single-nucleotide polymorphisms inside microRNA target sites influence tumor susceptibility. Cancer Res 70: 2789–2798. 10.1158/0008-5472.CAN-09-3541
    1. Novikova IV, Hennelly SP, Sanbonmatsu KY. 2012. Structural architecture of the human long non-coding RNA, steroid receptor RNA activator. Nucleic Acids Res 40: 5034–5051. 10.1093/nar/gks071
    1. Pintacuda G, Young AN, Cerase A. 2017. Function by structure: spotlights on Xist long non-coding RNA. Front Mol Biosci 4: 90 10.3389/fmolb.2017.00090
    1. Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP. 2010. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465: 1033–1038. 10.1038/nature09144
    1. Qian X, Zhao J, Yeung PY, Zhang QC, Kwok CK. 2019. Revealing lncRNA structures and interactions by sequencing-based approaches. Trends Biochem Sci 44: 33–52. 10.1016/j.tibs.2018.09.012
    1. Ramani V, Qiu R, Shendure J. 2015. High-throughput determination of RNA structure by proximity ligation. Nat Biotechnol 33: 980–984. 10.1038/nbt.3289
    1. Rambo RP, Tainer JA. 2013. Accurate assessment of mass, models and resolution by small-angle scattering. Nature 496: 477–481. 10.1038/nature12070
    1. Raveche ES, Salerno E, Scaglione BJ, Manohar V, Abbasi F, Lin YC, Fredrickson T, Landgraf P, Ramachandra S, Huppi K, et al. 2007. Abnormal microRNA-16 locus with synteny to human 13q14 linked to CLL in NZB mice. Blood 109: 5079–5086. 10.1182/blood-2007-02-071225
    1. Redis RS, Vela LE, Lu W, Ferreira de Oliveira J, Ivan C, Rodriguez-Aguayo C, Adamoski D, Pasculli B, Taguchi A, Chen Y, et al. 2016. Allele-specific reprogramming of cancer metabolism by the long non-coding RNA CCAT2. Mol Cell 61: 520–534. 10.1016/j.molcel.2016.01.015
    1. Rigoutsos I, Huynh T, Miranda K, Tsirigos A, McHardy A, Platt D. 2006. Short blocks from the noncoding parts of the human genome have instances within nearly all known genes and relate to biological processes. Proc Natl Acad Sci 103: 6605–6610. 10.1073/pnas.0601688103
    1. Rigoutsos I, Lee SK, Nam SY, Anfossi S, Pasculli B, Pichler M, Jing Y, Rodriguez-Aguayo C, Telonis AG, Rossi S, et al. 2017. N-BLR, a primate-specific non-coding transcript leads to colorectal cancer invasion and migration. Genome Biol 18: 98 10.1186/s13059-017-1224-0
    1. Rivas E, Clements J, Eddy SR. 2017. A statistical test for conserved RNA structure shows lack of evidence for structure in lncRNAs. Nat Methods 14: 45–48. 10.1038/nmeth.4066
    1. Roden C, Gaillard J, Kanoria S, Rennie W, Barish S, Cheng J, Pan W, Liu J, Cotsapas C, Ding Y, et al. 2017. Novel determinants of mammalian primary microRNA processing revealed by systematic evaluation of hairpin-containing transcripts and human genetic variation. Genome Res 27: 374–384. 10.1101/gr.208900.116
    1. Saridaki Z, Weidhaas JB, Lenz HJ, Laurent-Puig P, Jacobs B, De Schutter J, De Roock W, Salzman DW, Zhang W, Yang D, et al. 2014. A let-7 microRNA-binding site polymorphism in KRAS predicts improved outcome in patients with metastatic colorectal cancer treated with salvage cetuximab/panitumumab monotherapy. Clin Cancer Res 20: 4499–4510. 10.1158/1078-0432.CCR-14-0348
    1. Shah MY, Ferrajoli A, Sood AK, Lopez-Berestein G, Calin GA. 2016. microRNA therapeutics in cancer: an emerging concept. EBioMedicine 12: 34–42. 10.1016/j.ebiom.2016.09.017
    1. Shah MY, Ferracin M, Pileczki V, Chen B, Redis R, Fabris L, Zhang X, Ivan C, Shimizu M, Rodriguez-Aguayo C, et al. 2018. Cancer-associated rs6983267 SNP and its accompanying long noncoding RNA CCAT2 induce myeloid malignancies via unique SNP-specific RNA mutations. Genome Res 28: 432–447. 10.1101/gr.225128.117
    1. Shortridge MD, Walker MJ, Pavelitz T, Chen Y, Yang W, Varani G. 2017. A macrocyclic peptide ligand binds the oncogenic MicroRNA-21 precursor and suppresses dicer processing. ACS Chem Biol 12: 1611–1620. 10.1021/acschembio.7b00180
    1. Smith MA, Mattick JS. 2017. Structural and functional annotation of long noncoding RNAs. Methods Mol Biol 1526: 65–85. 10.1007/978-1-4939-6613-4_4
    1. Somarowthu S, Legiewicz M, Chillón I, Marcia M, Liu F, Pyle AM. 2015. HOTAIR forms an intricate and modular secondary structure. Mol Cell 58: 353–361. 10.1016/j.molcel.2015.03.006
    1. Spitale RC, Flynn RA, Zhang QC, Crisalli P, Lee B, Jung JW, Kuchelmeister HY, Batista PJ, Torre EA, Kool ET, et al. 2015. Structural imprints in vivo decode RNA regulatory mechanisms. Nature 519: 486–490. 10.1038/nature14263
    1. Suleymanova N, Crudden C, Shibano T, Worrall C, Oprea I, Tica A, Calin GA, Girnita A, Girnita L. 2017. Functional antagonism of β-arrestin isoforms balance IGF-1R expression and signalling with distinct cancer-related biological outcomes. Oncogene 36: 5734–5744. 10.1038/onc.2017.179
    1. Sun K, Jia Z, Duan R, Yan Z, Jin Z, Yan L, Li Q, Yang J. 2019. Long non-coding RNA XIST regulates miR-106b-5p/P21 axis to suppress tumor progression in renal cell carcinoma. Biochem Biophys Res Commun 510: 416–420. 10.1016/j.bbrc.2019.01.116
    1. Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I. 2008. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455: 1124–1128. 10.1038/nature07299
    1. Tay Y, Rinn J, Pandolfi PP. 2014. The multilayered complexity of ceRNA crosstalk and competition. Nature 505: 344–352. 10.1038/nature12986
    1. Thomas JR, Hergenrother PJ. 2008. Targeting RNA with small molecules. Chem Rev 108: 1171–1224. 10.1021/cr0681546
    1. Thomson DW, Dinger ME. 2016. Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet 17: 272–283. 10.1038/nrg.2016.20
    1. Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, Shi Y, Segal E, Chang HY. 2010. Long noncoding RNA as modular scaffold of histone modification complexes. Science 329: 689–693. 10.1126/science.1192002
    1. Ulitsky I. 2016. Evolution to the rescue: using comparative genomics to understand long non-coding RNAs. Nat Rev Genet 17: 601–614. 10.1038/nrg.2016.85
    1. Ulitsky I, Bartel DP. 2013. lincRNAs: genomics, evolution, and mechanisms. Cell 154: 26–46. 10.1016/j.cell.2013.06.020
    1. Ulitsky I, Shkumatava A, Jan CH, Sive H, Bartel DP. 2011. Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell 147: 1537–1550. 10.1016/j.cell.2011.11.055
    1. Vannini I, Wise PM, Challagundla KB, Plousiou M, Raffini M, Bandini E, Fanini F, Paliaga G, Crawford M, Ferracin M, et al. 2017. Transcribed ultraconserved region 339 promotes carcinogenesis by modulating tumor suppressor microRNAs. Nat Commun 8: 1801 10.1038/s41467-017-01562-9
    1. Velagapudi SP, Disney MD. 2014. Two-dimensional combinatorial screening enables the bottom-up design of a microRNA-10b inhibitor. Chem Commun (Camb) 50: 3027–3029. 10.1039/c3cc00173c
    1. Wang KC, Chang HY. 2011. Molecular mechanisms of long noncoding RNAs. Mol Cell 43: 904–914. 10.1016/j.molcel.2011.08.018
    1. Warner KD, Chen MC, Song W, Strack RL, Thorn A, Jaffrey SR, Ferré-D'Amaré AR. 2014. Structural basis for activity of highly efficient RNA mimics of green fluorescent protein. Nat Struct Mol Biol 21: 658–663. 10.1038/nsmb.2865
    1. Washietl S, Kellis M, Garber M. 2014. Evolutionary dynamics and tissue specificity of human long noncoding RNAs in six mammals. Genome Res 24: 616–628. 10.1101/gr.165035.113
    1. Wilson DN. 2014. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat Rev Microbiol 12: 35–48. 10.1038/nrmicro3155
    1. Worrall C, Suleymanova N, Crudden C, Trocoli Drakensjö I, Candrea E, Nedelcu D, Takahashi SI, Girnita L, Girnita A. 2017. Unbalancing p53/Mdm2/IGF-1R axis by Mdm2 activation restrains the IGF-1-dependent invasive phenotype of skin melanoma. Oncogene 36: 3274–3286. 10.1038/onc.2016.472
    1. Wu M, Tinoco I Jr. 1998. RNA folding causes secondary structure rearrangement. Proc Natl Acad Sci 95: 11555–11560. 10.1073/pnas.95.20.11555
    1. Wutz A, Rasmussen TP, Jaenisch R. 2002. Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat Genet 30: 167–174. 10.1038/ng820
    1. Xing Z, Lin A, Li C, Liang K, Wang S, Liu Y, Park PK, Qin L, Wei Y, Hawke DH, et al. 2014. lncRNA directs cooperative epigenetic regulation downstream of chemokine signals. Cell 159: 1110–1125. 10.1016/j.cell.2014.10.013
    1. Xue Z, Hennelly S, Doyle B, Gulati AA, Novikova IV, Sanbonmatsu KY, Boyer LA. 2016. A G-Rich motif in the lncRNA Braveheart interacts with a zinc-finger transcription factor to specify the cardiovascular lineage. Mol Cell 64: 37–50. 10.1016/j.molcel.2016.08.010
    1. Yang C, Crain S, Berwick RC, Chomsky N, Bolhuis JJ. 2017. The growth of language: universal grammar, experience, and principles of computation. Neurosci Biobehav Rev 81: 103–119. 10.1016/j.neubiorev.2016.12.023
    1. Yonath A. 2005. Antibiotics targeting ribosomes: resistance, selectivity, synergism, and cellular regulation. Annu Rev Biochem 74: 649–679. 10.1146/annurev.biochem.74.082803.133130
    1. Zampetaki A, Albrecht A, Steinhofel K. 2018. Long non-coding RNA structure and function: Is there a link? Front Physiol 9: 1201 10.3389/fphys.2018.01201
    1. Zappulla DC, Cech TR. 2004. Yeast telomerase RNA: a flexible scaffold for protein subunits. Proc Natl Acad Sci 101: 10024–10029. 10.1073/pnas.0403641101
    1. Zemel S, Bartolomei MS, Tilghman SM. 1992. Physical linkage of two mammalian imprinted genes, H19 and insulin-like growth factor 2. Nat Genet 2: 61–65. 10.1038/ng0992-61
    1. Zhang S, Chen L, Jung EJ, Calin GA. 2010. Targeting microRNAs with small molecules: from dream to reality. Clin Pharmacol Ther 87: 754–758. 10.1038/clpt.2010.46

Source: PubMed

3
Prenumerera