Non-Invasive Neuromodulation Using Time-Varying Caloric Vestibular Stimulation

Robert D Black, Lesco L Rogers, Kristen K Ade, Heather A Nicoletto, Heather D Adkins, Daniel T Laskowitz, Robert D Black, Lesco L Rogers, Kristen K Ade, Heather A Nicoletto, Heather D Adkins, Daniel T Laskowitz

Abstract

Caloric vestibular stimulation (CVS) to elicit the vestibulo-ocular reflex has long been used in clinical settings to aid in the diagnosis of balance disorders and to confirm the absence of brainstem function. While a number of studies have hinted at the potential therapeutic applications of CVS, the limitations of existing devices have frustrated that potential. Current CVS irrigators use water or air during short-duration applications; however, this approach is not tenable for longer duration therapeutic protocols or home use. Here, we describe a solid-state CVS device we developed in order to address these limitations. This device delivers tightly controlled time-varying thermal waveforms, which can be programmed through an external control unit. It contains several safety features, which limit patients to the prescribed waveform and prevent the potential for temperature extremes. In this paper, we provide evidence that CVS treatment with time-varying, but not constant temperature waveforms, elicits changes in cerebral blood flow physiology consistent with the neuromodulation of brainstem centers, and we present results from a small pilot study, which demonstrate that the CVS can safely and feasibly be used longitudinally in the home setting to treat episodic migraine. Together, these results indicate that this solid-state CVS device may be a viable tool for non-invasive neuromodulation.

Keywords: Caloric vestibular stimulation; brainstem; cerebral blood flow; migraine; neuromodulation.

Figures

FIGURE 1.
FIGURE 1.
CVS device headset and control unit.
FIGURE 2.
FIGURE 2.
(a) Exploded view of CVS headset. (b) Schematic showing the principal elements of the earpiece.
FIGURE 3.
FIGURE 3.
Infrared thermographs show the temperatures of the earpiece and heat sink during a square wave thermal waveform with a minimum temperature of 15 °C and a maximum temperature of 42 °C. Black is cold, white is hot.
FIGURE 4.
FIGURE 4.
Example of target and actual thermal profiles of the sawtooth time-varying thermal waveform used in this study.
FIGURE 5.
FIGURE 5.
(a) PI time course, (b) PI power spectrum, (c) HR time course and (d) HR power spectrum show physiological effects of time-varying CVS treatment when the subject is supine on a 22° wedge pillow. (e) Time course data for time-varying CVS in the supine position shows an anti-phase relationship between PI (purple) and HR (green), with oscillations in PI occurring first. (f) PI time course and (g) PI power spectrum when the subject is bent forward in a null position. The subject did not complete the entire post CVS time course during this recording. (h) PI time course and (i) PI power spectrum for constant temperature CVS (17 °C) when the subject is supine on a 22° wedge pillow. For panels a-d and f-i, baseline (black), CVS treatment (red), post-CVS treatment (blue).
FIGURE 6.
FIGURE 6.
The number of headaches reported over the course of the treatment and post-treatment observation periods binned into 2 week intervals.

References

    1. Fitzgerald G. and Hallpike C. S., “Studies in human vestibular function: I. Observations on directional preponderance (‘Nystagmusbereitschaft’) of caloric nystagmus resulting from cerebral lesions,” Brain, vol. 65, pp. 115–137, Jun. 1942.
    1. Barany R. and Wittmaack K., “Funktionelle Prufung des Vestibularapparates (functional testing of the vestibular apparatus),” Otol. Ges., vol. 20, pp. 184–238, Oct. 1911.
    1. Scherer H., Brandt U., Clarke A. H., Merbold U., and Parker R., “European vestibular experiments on the Spacelab-1 mission: 3. Caloric nystagmus in microgravity,” Experim. Brain Res., vol. 64, no. 2, pp. 255–263, Oct. 1986.
    1. Ma F. R., et al. , “Effects of caloric vestibular stimulation on serotoninergic system in the media vestibular nuclei of guinea pigs,” Chin. Med. J., vol. 120, no. 2, pp. 120–124, Jan. 2007.
    1. Horii A., et al. , “Effect of unilateral vestibular stimulation on histamine release from the hypothalamus of rats in vivo,” J. Neurophysiol., vol. 70, no. 5, pp. 1822–1826, Nov. 1993.
    1. Horii A., Takeda N., Mochizuki T., Okakura-Mochizuki K., Yamamoto Y., and Yamatodani A., “Effects of vestibular stimulation on acetylcholine release from rat hippocampus: An in vivo microdialysis study,” J. Neurophysiol., vol. 72, no. 2, pp. 605–611, 1994.
    1. Samoudi G., Nissbrandt H., Dutia M. B., and Bergquist F., “Noisy galvanic vestibular stimulation promotes GABA release in the substantia nigra and improves locomotion in hemiparkinsonian rats,” PLoS ONE, vol. 7, no. 1, p. e29308, 2012.
    1. Yamamoto Y., Struzik Z. R., Soma R., Ohashi K., and Kwak S., “Noisy vestibular stimulation improves autonomic and motor responsiveness in central neurodegenerative disorders,” Ann. Neurol., vol. 58, no. 2, pp. 175–181, Aug. 2005.
    1. Marcelli V., et al. , “Spatio-temporal pattern of vestibular information processing after brief caloric stimulation,” Eur. J. Radiol., vol. 70, no. 2, pp. 312–316, May 2009.
    1. Grigoryan S. S., Baklavadzhyan O. G., Minasyan S. M., Adamyan T. I., Gevorkyan É. S., and Sarkisyan S. G., “Responses of hypothalamic neurons to stimulation of the vestibular nerve and lateral vestibular nucleus in the rabbit,” Neurosci. Behavioral Physiol., vol. 29, no. 1, pp. 61–66, Jan-Feb 1999.
    1. Dieterich M. and Brandt T., “The bilateral central vestibular system: Its pathways, functions, and disorders,” Ann. New York Acad. Sci., vol. 1343, pp. 10–26, Apr. 2015.
    1. Klingner C. M., et al. , “Components of vestibular cortical function,” Behavioural Brain Res., vol. 236, pp. 194–199, Sep. 2012.
    1. Dieterich M. and Brandt T., “Functional brain imaging of peripheral and central vestibular disorders,” Brain, vol. 131, no. 10, pp. 2538–2552, Oct. 2008.
    1. Adair J. C., Na D. L., Schwartz R. L., and Heilman K. M., “Caloric stimulation in neglect: Evaluation of response as a function of neglect type,” J. Int. Neuropsychol. Soc., vol. 9, pp. 983–988, Nov. 2003.
    1. Cappa S., Sterzi R., Vallar G., and Bisiach E., “Remission of hemineglect and anosognosia during vestibular stimulation,” Neuropsychologia, vol. 25, no. 5, pp. 775–782, 1987.
    1. Moon S. Y., Lee B. H., and Na D. L., “Therapeutic effects of caloric stimulation and optokinetic stimulation on hemispatial neglect,” J. Clin. Neurol., vol. 2, no. 1, pp. 12–28, Mar. 2006.
    1. Rode G., Tilikete C., Luaute J., Rossetti Y., Vighetto A., and Boisson D., “Bilateral vestibular stimulation does not improve visual hemineglect,” Neuropsychologia, vol. 40, no. 7, pp. 1104–1106, 2002.
    1. Storrie-Baker H. J., Segalowitz S. J., Black S. E., McLean J. A. G., and Sullivan N., “Improvement of hemispatial neglect with cold-water calorics: An electrophysiological test of the arousal hypothesis of neglect,” J. Int. Neuropsychol. Soc., vol. 3, pp. 394–402, Jul. 1997.
    1. Sturt R. and Punt T. D., “Caloric vestibular stimulation and postural control in patients with spatial neglect following stroke,” Neuropsychol. Rehabil., vol. 23, no. 2, pp. 299–316, Apr. 2013.
    1. Vallar G., Papagno C., Rusconi M. L., and Bisiach E., “Vestibular stimulation, spatial hemineglect and dysphasia. Selective effects?” Cortex, vol. 31, no. 3, pp. 589–593, Sep. 1995.
    1. Kolev O., “How caloric vestibular irritation influences migraine attacks,” Cephalalgia, vol. 10, no. 4, pp. 167–169, Aug. 1990.
    1. McGeoch P. D., Williams L. E., Lee R. R., and Ramachandran V. S., “Behavioural evidence for vestibular stimulation as a treatment for central post-stroke pain,” J. Neurol. Neurosurgery Psychiatry, vol. 79, pp. 1298–1301, Nov. 2008.
    1. Ramachandran V. S., McGeoch P. D., Williams L., and Arcilla G., “Rapid relief of thalamic pain syndrome induced by vestibular caloric stimulation,” Neurocase, vol. 13, no. 3, pp. 185–188, Jun. 2007.
    1. Karlsen E. A., Mikhail H. H., Norris C. W., and Hassanein R. S., “Comparison of responses to air, water, and closed-loop caloric irrigators,” J. Speech Hear Res., vol. 35, pp. 186–191, Feb. 1992.
    1. Ichijo H., “Can caloric testing evaluate the function of vertical semicircular canals?” Acta Otolaryngol., vol. 131, no. 7, pp. 716–721, Jul. 2011.
    1. Maroonroge S., Emanuel D. C., and Letowski T. R., “Basic anatomy of the hearing system,” in Helmet-Mounted Displays: Sensation, Perception and Cognition Issues (279-306), Rash C. E., Russo M. B., Letowski T. R., and Schmeisser E. T., Eds. Fort Rucker, AL, USA: U.S. Army Aeromedical Research Lab, 2009.
    1. Zangemeister W. H. and Bock O., “The influence of pneumatization of mastoid bone on caloric nystagmus response: A clinical study and a mathematical model,” Acta Otolaryngol., vol. 88, nos. 1–6, pp. 105–109, 1979.
    1. Baertschi A. J., Johnson R. N., and Hanna G. R., “A theoretical and experimental determination of vestibular dynamics in caloric stimulation,” Biol. Cybern., vol. 20, no. 3, pp. 175–186, Sep. 1975.
    1. Bock O., von Koschitzky H., and Zangemeister W. H., “Vestibular adaptation to long-term stimuli,” Biol. Cybern., vol. 33, no. 2, pp. 77–79, Jun. 1979.
    1. Bagnall M. W., McElvain L. E., Faulstich M., and du Lac S., “Frequency-independent synaptic transmission supports a linear vestibular behavior,” Neuron, vol. 60, no. 2, pp. 343–352, Oct. 2008.
    1. Berg K., Wood-Dauphinee S., and Williams J. I., “The balance scale: Reliability assessment with elderly residents and patients with an acute stroke,” Scandin. J. Rehabil. Med., vol. 27, no. 1, pp. 27–36, Mar. 1995.
    1. Heckmann J. G., Leis S., Miick-Weymann M., Hilz M. J., and Neundorfer B., “Vestibular evoked blood flow response in the basilar artery,” Acta Neurol. Scandin., vol. 100, no. 1, pp. 12–17, Jul. 1999.
    1. Serrador J. M., Schlegel T. T., Black F. O., and Wood S. J., “Vestibular effects on cerebral blood flow,” BMC Neurosci., vol. 10, p. 119, Sep. 2009.
    1. Tiecks F. P., Planck J., Haberl R. L., and Brandt T., “Reduction in posterior cerebral artery blood flow velocity during caloric vestibular stimulation,” J. Cerebral Blood Flow Metabolism, vol. 16, no. 6, pp. 1379–1382, Nov. 1996.
    1. Santina C. C. D., Potyagaylo V., Migliaccio A. A., Minor L. B., and Carey J. P., “Orientation of human semicircular canals measured by three-dimensional multiplanar CT reconstruction,” J. Assoc. Res. Otolaryngol., vol. 6, no. 3, pp. 191–206, Sep. 2005.
    1. Spiegelberg A., Preuß M. and Kurtcuoglu V., “B-waves revisited,” Interdiscipl. Neurosurgery, vol. 6, pp. 13–17, Dec. 2016.
    1. Newell D. W., Aaslid R., Stooss R., and Reulen H. J., “The relationship of blood flow velocity fluctuations to intracranial pressure B waves,” J. Neurosurgery, vol. 76, no. 3, pp. 415–421, Mar. 1992.
    1. Balaban C. D., Jacob R. G., and Furman J. M., “Neurologic bases for comorbidity of balance disorders, anxiety disorders and migraine: Neurotherapeutic implications,” Expert Rev. Neurotherapeutics, vol. 11, no. 3, pp. 379–394, Mar. 2011.
    1. Buzsaki G., Rhythms of the Brain. London, U.K.: Oxford Univ. Press, 2011.
    1. Sliwka U., Harscher S., Diehl R. R., Van Schayck R., Niesen W. D., and Weiller C., “Spontaneous oscillations in cerebral blood flow velocity give evidence of different autonomic dysfunctions in various types of headache,” Headache, vol. 41, no. 2, pp. 157–163, Feb. 2001.
    1. Aurora S. K., Barrodale P. M., Tipton R. L., and Khodavirdi A., “Brainstem dysfunction in chronic migraine as evidenced by neurophysiological and positron emission tomography studies,” Headache, vol. 47, no. 7, pp. 996–1003, Jul-Aug 2007.
    1. Goadsby P. J., “Can we develop neurally acting drugs for the treatment of migraine?” Nature Rev. Drug Discovery, vol. 4, pp. 741–750, Sep. 2005.
    1. Brown J. E., Card J. P., and Yates B. J., “Polysynaptic pathways from the vestibular nuclei to the lateral mammillary nucleus of the rat: Substrates for vestibular input to head direction cells,” Exp. Brain Res., vol. 161, no. 1, pp. 47–61, Feb. 2005.
    1. Horowitz S. S., Blanchard J., and Morin L. P., “Medial vestibular connections with the hypocretin (orexin) system,” J. Comput. Neurol., vol. 487, pp. 127–146, Jun. 2005.
    1. Lipton R. B., et al. , “Single-pulse transcranial magnetic stimulation for acute treatment of migraine with aura: A randomised, double-blind, parallel-group, sham-controlled trial,” Lancet Neurol., vol. 9, no. 4, pp. 373–380, Apr. 2010.
    1. Schoenen J., et al. , “Migraine prevention with a supraorbital transcutaneous stimulator: A randomized controlled trial,” Neurology, vol. 80, no. 8, pp. 697–704, Feb. 2013.
    1. Underwood E. Cadaver Study Casts Doubts on How Zapping Brain May Boost Mood, Relieve Pain. Science, Apr. 20, 2016. [Online]. Available:
    1. Thielscher A., Antunes A., and Saturnino G. B., “Field modeling for transcranial magnetic stimulation: A useful tool to understand the physiological effects of TMS?” in Proc. Conf. IEEE Eng. Med. Biol. Soc., Aug. 2015, pp. 222–225.
    1. Vanzan S., Wilkinson D., Ferguson H., Pullicino P., and Sakel M., “Behavioural improvement in a minimally conscious state after caloric vestibular stimulation: Evidence from two single case studies,” Clin. Rehabil., Apr. 2016.
    1. Wilkinson D., Podlewska A., and Sakel M., “A durable gain in motor and non-motor symptoms of Parkinson’s disease following repeated caloric vestibular stimulation: A single-case study,” NeuroRehabilitation, vol. 38, no. 2, pp. 179–182, Feb. 2016.
    1. Kataoka H., et al. , “Can postural instability respond to galvanic vestibular stimulation in patients with Parkinson’s disease?” J. Movement Disorders, vol. 9, no. 1, pp. 40–43, Jan. 2016.
    1. Wuehr M., et al. , “Noisy vestibular stimulation improves dynamic walking stability in bilateral vestibulopathy,” Neurology, vol. 86, pp. 2196–2202, Jun. 2016.
    1. Wilkinson D., Ko P., Kilduff P., McGlinchey R., and Milberg W., “Improvement of a face perception deficit via subsensory galvanic vestibular stimulation,” J. Int. Neuropsychol. Soc., vol. 11, pp. 925–929, Nov. 2005.
    1. Wilkinson D., Zubko O., DeGutis J., Milberg W., and Potter J., “Improvement of a figure copying deficit during subsensory galvanic vestibular stimulation,” J. Neuropsychol., vol. 4, no. 1, pp. 107–118, Mar. 2010.
    1. Wilkinson D., Zubko O., Sakel M., Coulton S., Higgins T., and Pullicino P., “Galvanic vestibular stimulation in hemi-spatial neglec,” Frontiers Integr. Neurosci., vol. 8, p. 4, Jan. 2014.
    1. Zubko O., Wilkinson D., Langston D., and Sakel M., “The effect of repeated sessions of galvanic vestibular stimulation on target cancellation in visuo-spatial neglect: Preliminary evidence from two cases,” Brain Injury, vol. 27, no. 5, pp. 613–619, 2013.
    1. Eatock R. A. and Songer J. E., “Vestibular hair cells and afferents: Two channels for head motion signals,” Annu. Rev. Neurosci., vol. 34, pp. 501–534, Jul. 2011.
    1. Curthoys I. S. and MacDougall H. G., “What galvanic vestibular stimulation actually activates,” Frontiers Neurol., vol. 3, p. 117, Jul. 2012.
    1. Eatock R. A., Xue J., and Kalluri R., “Ion channels in mammalian vestibular afferents may set regularity of firing,” J. Exp. Biol., vol. 211, pp. 1764–1774, Jun. 2008.
    1. Lopez C., Blanke O., and Mast F. W., “The human vestibular cortex revealed by coordinate-based activation likelihood estimation meta-analysis,” Neuroscience, vol. 212, pp. 159–179, Jun. 2012.

Source: PubMed

3
Prenumerera