Synaptic organisation of the basal ganglia

J P Bolam, J J Hanley, P A Booth, M D Bevan, J P Bolam, J J Hanley, P A Booth, M D Bevan

Abstract

The basal ganglia are a group of subcortical nuclei involved in a variety of processes including motor, cognitive and mnemonic functions. One of their major roles is to integrate sensorimotor, associative and limbic information in the production of context-dependent behaviours. These roles are exemplified by the clinical manifestations of neurological disorders of the basal ganglia. Recent advances in many fields, including pharmacology, anatomy, physiology and pathophysiology have provided converging data that have led to unifying hypotheses concerning the functional organisation of the basal ganglia in health and disease. The major input to the basal ganglia is derived from the cerebral cortex. Virtually the whole of the cortical mantle projects in a topographic manner onto the striatum, this cortical information is 'processed' within the striatum and passed via the so-called direct and indirect pathways to the output nuclei of the basal ganglia, the internal segment of the globus pallidus and the substantia nigra pars reticulata. The basal ganglia influence behaviour by the projections of these output nuclei to the thalamus and thence back to the cortex, or to subcortical 'premotor' regions. Recent studies have demonstrated that the organisation of these pathways is more complex than previously suggested. Thus the cortical input to the basal ganglia, in addition to innervating the spiny projection neurons, also innervates GABA interneurons, which in turn provide a feed-forward inhibition of the spiny output neurons. Individual neurons of the globus pallidus innervate basal ganglia output nuclei as well as the subthalamic nucleus and substantia nigra pars compacta. About one quarter of them also innervate the striatum and are in a position to control the output of the striatum powerfully as they preferentially contact GABA interneurons. Neurons of the pallidal complex also provide an anatomical substrate, within the basal ganglia, for the synaptic integration of functionally diverse information derived from the cortex. It is concluded that the essential concept of the direct and indirect pathways of information flow through the basal ganglia remains intact but that the role of the indirect pathway is more complex than previously suggested and that neurons of the globus pallidus are in a position to control the activity of virtually the whole of the basal ganglia.

References

    1. Science. 1997 Mar 14;275(5306):1593-9
    1. J Neurosci Res. 1992 Feb;31(2):212-30
    1. Brain Res. 1983 Apr 4;264(2):255-65
    1. Brain Res. 1984 Jun 8;302(2):267-75
    1. Neuroscience. 1984 Dec;13(4):1189-215
    1. J Neurophysiol. 1995 Mar;73(3):1234-52
    1. Brain Res. 1992 Aug 28;589(1):84-90
    1. J Neurophysiol. 1997 Apr;77(4):1697-715
    1. J Neurosci. 1997 Apr 1;17(7):2477-91
    1. Neuroscience. 1987 Mar;20(3):797-816
    1. J Comp Neurol. 1980 Feb 15;189(4):721-40
    1. Neuroscience. 1996 Jul;73(2):335-57
    1. Prog Brain Res. 1993;99:51-72
    1. J Neurocytol. 1983 Apr;12(2):325-44
    1. J Neurosci. 1998 Jan 1;18(1):266-83
    1. Prog Brain Res. 1993;99:277-97
    1. Neuroscience. 1996 Nov;75(1):5-12
    1. Neuroscience. 1991;44(1):45-73
    1. J Neurochem. 1994 Feb;62(2):807-10
    1. Trends Neurosci. 1990 Jul;13(7):277-80
    1. Eur J Neurosci. 1996 May;8(5):861-9
    1. J Neurosci. 1991 Sep;11(9):2838-47
    1. J Comp Neurol. 1980 Dec 1;194(3):599-615
    1. J Neurocytol. 1984 Aug;13(4):593-616
    1. Prog Brain Res. 1993;99:73-88
    1. J Neurosci. 1998 Jun 15;18(12):4722-31
    1. Trends Neurosci. 1990 Jul;13(7):259-65
    1. J Neurosci. 1997 Jan 15;17(2):819-33
    1. J Comp Neurol. 1983 Jan 10;213(2):121-34
    1. Trends Neurosci. 1989 Oct;12(10):366-75
    1. Brain Res. 1988 May 3;447(2):346-52
    1. Exp Brain Res. 1991;86(3):641-51
    1. J Neurosci. 1987 Dec;7(12):3915-34
    1. Curr Opin Neurobiol. 1993 Dec;3(6):950-7
    1. J Neurochem. 1996 Jan;66(1):131-7
    1. Nature. 1984 Oct 4-10;311(5985):461-4
    1. J Neurosci. 1999 Sep 1;19(17):7617-28
    1. Neuroreport. 1992 May;3(5):409-12
    1. Science. 1993 Feb 5;259(5096):819-21
    1. J Neurosci. 1995 Nov;15(11):7105-20
    1. Regul Pept. 1984 Mar;8(2):105-15
    1. Neuroscience. 1996 Feb;70(4):925-40
    1. Brain Res. 1981 Aug 3;217(2):245-63
    1. Neuroscience. 1986 Mar;17(3):547-71
    1. J Neurosci. 1998 Nov 15;18(22):9438-52
    1. Brain Res. 1987 Dec 22;437(1):45-55
    1. Neuroscience. 1998 Sep;86(2):353-87
    1. Exp Brain Res. 1981;41(3-4):329-37
    1. J Neurocytol. 1982 Oct;11(5):779-807
    1. Brain Res. 1994 Aug 8;653(1-2):251-7
    1. J Neurophysiol. 1994 Nov;72(5):2555-8
    1. Brain Res. 1989 Jul 24;493(1):160-7
    1. Nature. 1998 Jul 30;394(6692):475-8
    1. Philos Trans R Soc Lond B Biol Sci. 1971 Sep 30;262(845):429-39
    1. J Comp Neurol. 1985 Jul 1;237(1):1-20
    1. J Neurosci Res. 1990 Mar;25(3):263-80
    1. Neuroscience. 1985 Apr;14(4):991-1010
    1. Eur J Neurosci. 1990;2(6):500-511
    1. Brain Res. 1994 Feb 14;636(2):308-19
    1. Nature. 1995 Nov 2;378(6552):75-8
    1. J Comp Neurol. 1995 Jul 17;358(1):119-41
    1. J Comp Neurol. 1979 Sep 15;187(2):261-83
    1. Brain Res. 1990 Dec 17;536(1-2):1-15
    1. Brain Res. 1991 May 24;549(2):285-91
    1. Philos Trans R Soc Lond B Biol Sci. 1971 Sep 30;262(845):383-401
    1. J Comp Neurol. 1992 Jul 15;321(3):456-76
    1. J Comp Neurol. 1990 Jun 1;296(1):47-64
    1. Trends Neurosci. 1995 Dec;18(12):527-35
    1. J Neurosci. 1995 Jul;15(7 Pt 2):5222-37
    1. Neuroreport. 1993 Dec 13;5(3):205-8
    1. Eur J Neurosci. 1998 Dec;10(12):3721-36
    1. J Neurosci. 1993 Nov;13(11):4908-23
    1. Neurosci Res. 1997 Jan;27(1):1-8
    1. Neuroscience. 1979;4(12):1805-52
    1. Brain Res. 1989 Sep 25;498(1):1-16
    1. J Neurochem. 1994 Dec;63(6):2108-17
    1. J Comp Neurol. 1978 Jan 1;177(1):113-23
    1. Brain Res. 1992 May 15;580(1-2):215-24
    1. Neuroscience. 1994 Nov;63(2):363-79
    1. J Neurosci. 1982 Mar;2(3):303-20
    1. Neuroscience. 1995 Apr;65(3):709-30
    1. J Comp Neurol. 1996 Mar 18;366(4):580-99
    1. Brain Res. 1994 Oct 3;659(1-2):99-109
    1. Science. 1981 Aug 21;213(4510):915-8
    1. J Neurosci. 1981 Jun;1(6):561-77
    1. Neuroscience. 1993 May;54(2):493-8
    1. J Comp Neurol. 1993 Jun 22;332(4):499-513
    1. Ciba Found Symp. 1984;107:3-29
    1. J Comp Neurol. 1997 Jun 9;382(3):348-63
    1. J Comp Neurol. 1990 Dec 8;302(2):197-205
    1. J Comp Neurol. 1982 Jul 10;208(4):352-68
    1. Trends Neurosci. 1990 Jul;13(7):281-5
    1. J Comp Neurol. 1994 Jun 1;344(1):1-19
    1. J Comp Neurol. 1988 Mar 8;269(2):219-34
    1. Neurosci Lett. 1991 Jul 8;128(1):121-5
    1. Nat Neurosci. 1999 May;2(5):467-72
    1. Philos Trans R Soc Lond B Biol Sci. 1971 Sep 30;262(845):413-27
    1. Annu Rev Neurosci. 1986;9:357-81
    1. Trends Neurosci. 1990 Jul;13(7):266-71
    1. J Comp Neurol. 1988 Jan 22;267(4):455-71
    1. J Neurosci. 1997 Jan 1;17(1):308-24
    1. Prog Brain Res. 1986;64:175-90
    1. Neuroscience. 1997 Nov;81(2):353-70
    1. Brain Res Brain Res Rev. 1997 Feb;23(1-2):62-78
    1. Exp Brain Res. 1988;70(2):361-77
    1. J Comp Neurol. 1981 Feb 1;195(4):567-84
    1. Science. 1994 Sep 23;265(5180):1826-31
    1. Neuroscience. 1994 Oct;62(3):707-19
    1. Neuroscience. 1987 Oct;23(1):223-42

Source: PubMed

3
Prenumerera