Network analysis reveals distinct clinical syndromes underlying acute mountain sickness

David P Hall, Ian J C MacCormick, Alex T Phythian-Adams, Nina M Rzechorzek, David Hope-Jones, Sorrel Cosens, Stewart Jackson, Matthew G D Bates, David J Collier, David A Hume, Thomas Freeman, A A Roger Thompson, John Kenneth Baillie, David P Hall, Ian J C MacCormick, Alex T Phythian-Adams, Nina M Rzechorzek, David Hope-Jones, Sorrel Cosens, Stewart Jackson, Matthew G D Bates, David J Collier, David A Hume, Thomas Freeman, A A Roger Thompson, John Kenneth Baillie

Abstract

Acute mountain sickness (AMS) is a common problem among visitors at high altitude, and may progress to life-threatening pulmonary and cerebral oedema in a minority of cases. International consensus defines AMS as a constellation of subjective, non-specific symptoms. Specifically, headache, sleep disturbance, fatigue and dizziness are given equal diagnostic weighting. Different pathophysiological mechanisms are now thought to underlie headache and sleep disturbance during acute exposure to high altitude. Hence, these symptoms may not belong together as a single syndrome. Using a novel visual analogue scale (VAS), we sought to undertake a systematic exploration of the symptomatology of AMS using an unbiased, data-driven approach originally designed for analysis of gene expression. Symptom scores were collected from 292 subjects during 1110 subject-days at altitudes between 3650 m and 5200 m on Apex expeditions to Bolivia and Kilimanjaro. Three distinct patterns of symptoms were consistently identified. Although fatigue is a ubiquitous finding, sleep disturbance and headache are each commonly reported without the other. The commonest pattern of symptoms was sleep disturbance and fatigue, with little or no headache. In subjects reporting severe headache, 40% did not report sleep disturbance. Sleep disturbance correlates poorly with other symptoms of AMS (Mean Spearman correlation 0.25). These results challenge the accepted paradigm that AMS is a single disease process and describe at least two distinct syndromes following acute ascent to high altitude. This approach to analysing symptom patterns has potential utility in other clinical syndromes.

Trial registration: ClinicalTrials.gov NCT00664001.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Identification of VAS questionnaires exhibiting…
Figure 1. Identification of VAS questionnaires exhibiting similar symptom profiles using Biolayout Express 3D.
Each node (coloured sphere) represents a VAS questionnaire. Nodes are connected by weighted lines, which represent correlations between similar symptom profiles. Nodes are connected with each other if the Pearson correlation coefficient between them exceeds 0.95. The MCL clustering algorithm (inflation = 1.4) sub-divided this network into three discrete clusters of VAS questionnaires, each of which shared similar features. Figures adjacent to the clusters represent the median VAS scores for each question in the VAS questionnaire. The green cluster (cluster 1) contains 407 nodes and corresponds to subjects who slept poorly, and were fatigued but had little headache. The brown cluster (cluster 2) contains 127 nodes and corresponds to subjects who slept poorly and did have headache. The purple cluster (cluster 3) contains 43 nodes and corresponds to subjects who had little sleep disturbance but had headache. The remaining nodes do not correlate sufficiently with each other to form a significant cluster.
Figure 2. Correlations between different LLS symptoms.
Figure 2. Correlations between different LLS symptoms.
The correlations between symptoms included in the Lake Louise Score was explored across the whole population of responses (n = 1045) using Biolayout 3D (minimum Pearson correlation cut–off r = 0.4). Headache, fatigue, nausea and dizziness all correlate with each other, whereas sleep is an outlier and correlates only with fatigue at this threshold.
Figure 3. Frequency distribution of LLS and…
Figure 3. Frequency distribution of LLS and VAS scores (n = 1045).
(A) Distribution of LLS. A positive LLS, indicating AMS, is a score of 3 or greater in the presence of headache; (B) Distribution of Lake Louise Scores following square-root transformation; (C) Distribution of total VAS scores (minimum 0 mm; maximum 700 mm); (D) Distribution of total VAS scores following square-root transformation of data. LLS: Lake Louise Score; VAS: visual analogue scale; AMS: acute mountain sickness.

References

    1. Maggiorini M, Buhler B, Walter M, Oelz O (1990) Prevalence of acute mountain sickness in the Swiss Alps. BMJ 301: 853–855.
    1. Roach RC, Hackett PH (2001) Frontiers of hypoxia research: acute mountain sickness. J Exp Biol 204: 3161–3170.
    1. Roach RC, Bartsch P, Hackett PH, Oelz O (1993) The Lake Louise acute mountain sickness scoring system. In: Sutton JR, Houston CS, Coates G, editors. Hypoxia and Molecular Medicine. Burlington, VT: Queens City Printers. pp. 272–274.
    1. West JB (2011) Con: Headache should not be a required symptom for the diagnosis of acute mountain sickness. High Alt Med Biol 12: 23–25 discussion 27.
    1. Kallenberg K, Bailey DM, Christ S, Mohr A, Roukens R, et al. (2007) Magnetic resonance imaging evidence of cytotoxic cerebral edema in acute mountain sickness. J Cereb Blood Flow Metab 27: 1064–1071.
    1. Fagenholz PJ, Gutman JA, Murray AF, Noble VE, Camargo CA Jr, et al. (2009) Optic nerve sheath diameter correlates with the presence and severity of acute mountain sickness: evidence for increased intracranial pressure. J Appl Physiol 106: 1207–1211.
    1. Sutherland AI, Morris DS, Owen CG, Bron AJ, Roach RC (2008) Optic nerve sheath diameter, intracranial pressure and acute mountain sickness on Mount Everest: a longitudinal cohort study. Br J Sports Med 42: 183–188.
    1. Morocz IA, Zientara GP, Gudbjartsson H, Muza S, Lyons T, et al. (2001) Volumetric quantification of brain swelling after hypobaric hypoxia exposure. Exp Neurol 168: 96–104.
    1. Bailey DM, Bartsch P, Knauth M, Baumgartner RW (2009) Emerging concepts in acute mountain sickness and high-altitude cerebral edema: from the molecular to the morphological. Cell Mol Life Sci 66: 3583–3594.
    1. Wilson MH, Davagnanam I, Holland G, Dattani RS, Tamm A, et al. (2013) Cerebral venous system and anatomical predisposition to high-altitude headache. Ann Neurol 73: 381–389.
    1. Wilson MH, Newman S, Imray CH (2009) The cerebral effects of ascent to high altitudes. Lancet Neurol 8: 175–191.
    1. Burgess KR, Johnson P, Edwards N, Cooper J (2004) Acute mountain sickness is associated with sleep desaturation at high altitude. Respirology 9: 485–492.
    1. Price DD, McGrath PA, Rafii A, Buckingham B (1983) The validation of visual analogue scales as ratio scale measures for chronic and experimental pain. Pain 17: 45–56.
    1. DeLoach LJ, Higgins MS, Caplan AB, Stiff JL (1998) The visual analog scale in the immediate postoperative period: intrasubject variability and correlation with a numeric scale. Anesth Analg 86: 102–106.
    1. Gallagher EJ, Liebman M, Bijur PE (2001) Prospective validation of clinically important changes in pain severity measured on a visual analog scale. Ann Emerg Med 38: 633–638.
    1. Todd KH, Funk KG, Funk JP, Bonacci R (1996) Clinical significance of reported changes in pain severity. Ann Emerg Med 27: 485–489.
    1. Roach R, Kayser B (2007) Measuring mountain maladies. High Alt Med Biol 8: 171–172.
    1. Harris NS, Wenzel RP, Thomas SH (2003) High altitude headache: efficacy of acetaminophen vs. ibuprofen in a randomized, controlled trial. J Emerg Med 24: 383–387.
    1. Wagner DR, Tatsugawa K, Parker D, Young TA (2007) Reliability and utility of a visual analog scale for the assessment of acute mountain sickness. High Alt Med Biol 8: 27–31.
    1. Kayser B, Aliverti A, Pellegrino R, Dellaca R, Quaranta M, et al. (2010) Comparison of a visual analogue scale and Lake Louise symptom scores for acute mountain sickness. High Alt Med Biol 11: 69–72.
    1. Van Roo JD, Lazio MP, Pesce C, Malik S, Courtney DM (2011) Visual analog scale (VAS) for assessment of acute mountain sickness (AMS) on Aconcagua. Wilderness Environ Med 22: 7–14.
    1. Hext F, Stubbings A, Bird B, Patey S, Wright A (2011) Visual analogue scores in assessment of acute mountain sickness. High Alt Med Biol 12: 329–333.
    1. Hume DA, Summers KM, Raza S, Baillie JK, Freeman TC (2010) Functional clustering and lineage markers: insights into cellular differentiation and gene function from large-scale microarray studies of purified primary cell populations. Genomics 95: 328–338.
    1. Thompson AA, Baillie JK, Toshner M, Maxwell SR, Webb DJ, et al. (2006) Pericardial effusions in healthy lowlanders after acute ascent to high altitude. Heart 92: 539–540.
    1. Baillie JK, Thompson AA, Irving JB, Bates MG, Sutherland AI, et al. (2009) Oral antioxidant supplementation does not prevent acute mountain sickness: double blind, randomized placebo-controlled trial. QJM 102: 341–348.
    1. Bates MG, Thompson AA, Baillie JK, Sutherland AI, Irving JB, et al. (2011) Sildenafil citrate for the prevention of high altitude hypoxic pulmonary hypertension: double blind, randomized, placebo-controlled trial. High Alt Med Biol 12: 207–214.
    1. Jackson SJ, Varley J, Sellers C, Josephs K, Codrington L, et al. (2010) Incidence and predictors of acute mountain sickness among trekkers on Mount Kilimanjaro. High Alt Med Biol 11: 217–222.
    1. Theocharidis A, van Dongen S, Enright AJ, Freeman TC (2009) Network visualization and analysis of gene expression data using BioLayout Express(3D). Nat Protoc 4: 1535–1550.
    1. Freeman TC, Goldovsky L, Brosch M, van Dongen S, Maziere P, et al. (2007) Construction, visualisation, and clustering of transcription networks from microarray expression data. PLoS Comput Biol 3: 2032–2042.
    1. van Dongen S (2000) Graph clustering by flow simulation.
    1. Enright AJ, Van Dongen S, Ouzounis CA (2002) An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 30: 1575–1584.
    1. Pereira-Leal JB, Enright AJ, Ouzounis CA (2004) Detection of functional modules from protein interaction networks. Proteins 54: 49–57.
    1. (2011) R: A Language and Environment for Statistical Computing.
    1. Mabbott NA, Kenneth Baillie J, Hume DA, Freeman TC (2010) Meta-analysis of lineage-specific gene expression signatures in mouse leukocyte populations. Immunobiology 215: 724–736.
    1. Summers KM, Raza S, van Nimwegen E, Freeman TC, Hume DA (2010) Co-expression of FBN1 with mesenchyme-specific genes in mouse cell lines: implications for phenotypic variability in Marfan syndrome. Eur J Hum Genet 18: 1209–1215.
    1. Grant S, Aitchison T, Henderson E, Christie J, Zare S, et al. (1999) A comparison of the reproducibility and the sensitivity to change of visual analogue scales, Borg scales, and Likert scales in normal subjects during submaximal exercise. Chest 116: 1208–1217.
    1. Bartsch P, Bailey DM, Berger MM, Knauth M, Baumgartner RW (2004) Acute mountain sickness: controversies and advances. High Alt Med Biol 5: 110–124.

Source: PubMed

3
Prenumerera