Co-ingestion of whey protein hydrolysate with milk minerals rich in calcium potently stimulates glucagon-like peptide-1 secretion: an RCT in healthy adults

Yung-Chih Chen, Harry A Smith, Aaron Hengist, Oliver J Chrzanowski-Smith, Ulla Ramer Mikkelsen, Harriet A Carroll, James A Betts, Dylan Thompson, John Saunders, Javier T Gonzalez, Yung-Chih Chen, Harry A Smith, Aaron Hengist, Oliver J Chrzanowski-Smith, Ulla Ramer Mikkelsen, Harriet A Carroll, James A Betts, Dylan Thompson, John Saunders, Javier T Gonzalez

Abstract

Purpose: To examine whether calcium type and co-ingestion with protein alter gut hormone availability.

Methods: Healthy adults aged 26 ± 7 years (mean ± SD) completed three randomized, double-blind, crossover studies. In all studies, arterialized blood was sampled postprandially over 120 min to determine GLP-1, GIP and PYY responses, alongside appetite ratings, energy expenditure and blood pressure. In study 1 (n = 20), three treatments matched for total calcium content (1058 mg) were compared: calcium citrate (CALCITR); milk minerals rich in calcium (MILK MINERALS); and milk minerals rich in calcium plus co-ingestion of 50 g whey protein hydrolysate (MILK MINERALS + PROTEIN). In study 2 (n = 6), 50 g whey protein hydrolysate (PROTEIN) was compared to MILK MINERALS + PROTEIN. In study 3 (n = 6), MILK MINERALS was compared to the vehicle of ingestion (water plus sucralose; CONTROL).

Results: MILK MINERALS + PROTEIN increased GLP-1 incremental area under the curve (iAUC) by ~ ninefold (43.7 ± 11.1 pmol L-1 120 min; p < 0.001) versus both CALCITR and MILK MINERALS, with no difference detected between CALCITR (6.6 ± 3.7 pmol L-1 120 min) and MILK MINERALS (5.3 ± 3.5 pmol L-1 120 min; p > 0.999). MILK MINERALS + PROTEIN produced a GLP-1 iAUC ~ 25% greater than PROTEIN (p = 0.024; mean difference: 9.1 ± 6.9 pmol L-1 120 min), whereas the difference between MILK MINERALS versus CONTROL was small and non-significant (p = 0.098; mean difference: 4.2 ± 5.1 pmol L-1 120 min).

Conclusions: When ingested alone, milk minerals rich in calcium do not increase GLP-1 secretion compared to calcium citrate. Co-ingesting high-dose whey protein hydrolysate with milk minerals rich in calcium increases postprandial GLP-1 concentrations to some of the highest physiological levels ever reported. Registered at ClinicalTrials.gov: NCT03232034, NCT03370484, NCT03370497.

Keywords: Calcium; Gastric inhibitory polypeptide; Incretins; Metabolism; Peptide tyrosine tyrosine; Postprandial; Protein.

Conflict of interest statement

Y.C.C., H.A.S., A.H., O.C.S., D.T., and J.S. have no conflicts of interest to declare. U.R.M. is an employee of Arla Foods Ingredients who produce and sell milk minerals enriched in calcium and whey protein hydrolysate. H.A.C. has accepted conference fees from Danone Nutricia and received research funding from the European Hydration Institute. J.A.B. has received research funding from GlaxoSmithKline Nutritional Healthcare R&D, Lucozade Ribena Suntory and Kelloggs, has acted as a consultant for Lucozade Ribena Suntory and PepsiCo and is a scientific advisor to the International Life Sciences Institute (ILSI) Europe Task Force on Energy Balance. J.T.G. has received research funding from Arla Foods Ingredients, Lucozade Ribena Suntory, The Rank Prize Funds, The European Society for Clinical Nutrition and Metabolism (ESPEN), and Kenniscentrum Suiker and Voeding, and has acted as a consultant for Lucozade Ribena Suntory and PepsiCo.

Figures

Fig. 1
Fig. 1
Plasma GLP-1 concentrations (a) and time-average incremental area under the curve (iAUC) values for plasma GLP-1 (b), GIP (c) and PYY (d) following ingestion of calcium citrate, milk minerals rich in calcium (MILK MINERALS) and MILK MINERALS plus whey protein hydrolysate (MILK MINERALS + PROTEIN) in healthy men and women. Data are means ± 95% CI, n = 20 for all data other than PYY, which are n = 16. GLP-1 glucagon-like peptide-1, GIP glucose-dependent insulinotropic polypeptide, PYY peptide tyrosine tyrosine. bSignificant difference between MILK MINERALS + PROTEIN and MILK MINERALS; cSignificant difference between MILK MINERALS + PROTEIN and CITRATE (p ≤ 0.05)
Fig. 2
Fig. 2
Energy expenditure (a), respiratory exchange ratio (b), plasma glucose concentrations (c) and time-average postprandial area under the curve (AUC) values for appetite (d) following ingestion of calcium citrate, milk minerals rich in calcium (MILK MINERALS) and MILK MINERALS plus whey protein hydrolysate (MILK MINERALS + PROTEIN) in healthy men and women. Data are means ± 95% CI, n = 20. aSignificant difference between CITRATE and MILK MINERALS; bSignificant difference between MILK MINERALS + PROTEIN and MILK MINERALS; cSignificant difference between MILK MINERALS + PROTEIN and CITRATE (p ≤ 0.05)
Fig. 3
Fig. 3
Systolic (a) and diastolic (b) blood pressure following ingestion of calcium citrate, milk minerals rich in calcium (MILK MINERALS) and MILK MINERALS plus whey protein hydrolysate (MILK MINERALS + PROTEIN) in healthy men and women. Data are means ± 95% CI, n = 20
Fig. 4
Fig. 4
Plasma GLP-1 concentrations (a) and time-average incremental area under the curve (iAUC) values for plasma GLP-1 (b), GIP (c) and PYY (d) following ingestion of whey protein hydrolysate in the presence (MILK MINERALS + PROTEIN) and absence (PROTEIN) of milk minerals rich in calcium in healthy men and women. Data are means ± 95% CI, n = 6. GLP-1 glucagon-like peptide-1, GIP glucose-dependent insulinotropic polypeptide, PYY peptide tyrosine tyrosine. *Significant difference between treatments (p ≤ 0.05)
Fig. 5
Fig. 5
Plasma GLP-1 concentrations (a) and time-average incremental area under the curve (iAUC) values for plasma GLP-1 (b), GIP (c) and PYY (d) following ingestion of milk minerals rich in calcium (MILK MINERALS) or the vehicle of ingestion (CONTROL; 500 mL water plus 80 mg sucralose) in healthy men and women. Data are means ± 95% CI, n = 6. GLP-1 glucagon-like peptide-1, GIP glucose-dependent insulinotropic polypeptide, PYY peptide tyrosine tyrosine

References

    1. Drucker DJ. Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metab. 2018;27(4):740–756. doi: 10.1016/j.cmet.2018.03.001.
    1. Nauck MA, Meier JJ, Cavender MA, Abd El Aziz M, Drucker DJ. Cardiovascular actions and clinical outcomes with glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors. Circulation. 2017;136(9):849–870. doi: 10.1161/CIRCULATIONAHA.117.028136.
    1. Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev. 2007;87(4):1409–1439. doi: 10.1152/physrev.00034.2006.
    1. Pinyo J, Hira T, Hara H. Enhanced postprandial glucagon-like peptide-1 secretion during obesity development has a protective role against glucose intolerance induction in rats. Br J Nutr. 2019 doi: 10.1017/s0007114519001223.
    1. Picot J, Jones J, Colquitt JL, Gospodarevskaya E, Loveman E, Baxter L, Clegg AJ. The clinical effectiveness and cost-effectiveness of bariatric (weight loss) surgery for obesity: a systematic review and economic evaluation. Health Technol Assess. 2009;13(41):1–190. doi: 10.3310/hta13410.
    1. Bendtsen LQ, Lorenzen JK, Bendsen NT, Rasmussen C, Astrup A. Effect of dairy proteins on appetite, energy expenditure, body weight, and composition: a review of the evidence from controlled clinical trials. Adv Nutr. 2013;4(4):418–438. doi: 10.3945/an.113.003723.
    1. Gonzalez JT, Green BP, Brown MA, Rumbold PL, Turner LA, Stevenson EJ. Calcium ingestion suppresses appetite and produces acute overcompensation of energy intake independent of protein in healthy adults. J Nutr. 2015;145(3):476–482. doi: 10.3945/jn.114.205708.
    1. Mace OJ, Schindler M, Patel S. The regulation of K- and L-cell activity by GLUT2 and the calcium-sensing receptor CasR in rat small intestine. J Physiol. 2012;590(Pt 12):2917–2936. doi: 10.1113/jphysiol.2011.223800.
    1. Tolhurst G, Zheng Y, Parker HE, Habib AM, Reimann F, Gribble FM. Glutamine triggers and potentiates glucagon-like peptide-1 secretion by raising cytosolic Ca2+ and cAMP. Endocrinology. 2011;152(2):405–413. doi: 10.1210/en.2010-0956.
    1. Conigrave AD, Brown EM. Taste receptors in the gastrointestinal tract. II. l-amino acid sensing by calcium-sensing receptors: implications for GI physiology. Am J Physiol Gastrointest Liver Physiol. 2006;291(5):G753–G761. doi: 10.1152/ajpgi.00189.2006.
    1. Alamshah A, Spreckley E, Norton M, Kinsey-Jones JS, Amin A, Ramgulam A, Cao Y, Johnson R, Saleh K, Akalestou E, Malik Z, Gonzalez-Abuin N, Jomard A, Amarsi R, Moolla A, Sargent PR, Gray GW, Bloom SR, Murphy KG. l-phenylalanine modulates gut hormone release and glucose tolerance, and suppresses food intake through the calcium-sensing receptor in rodents. Int J Obes. 2017;41(11):1693–1701. doi: 10.1038/ijo.2017.164.
    1. Gonzalez JT, Stevenson EJ. Calcium co-ingestion augments postprandial glucose-dependent insulinotropic peptide1–42, glucagon-like peptide-1 and insulin concentrations in humans. Eur J Nutr. 2014;53(2):375–385. doi: 10.1007/s00394-013-0532-8.
    1. Trautvetter U, Jahreis G. Effect of supplementary calcium phosphate on plasma gastrointestinal hormones in a double-blind, placebo-controlled, cross-over human study. Br J Nutr. 2013 doi: 10.1017/s0007114513002341.
    1. Lorenzen JK, Nielsen S, Holst JJ, Tetens I, Rehfeld JF, Astrup A. Effect of dairy calcium or supplementary calcium intake on postprandial fat metabolism, appetite, and subsequent energy intake. Am J Clin Nutr. 2007;85(3):678–687. doi: 10.1093/ajcn/85.3.678.
    1. Gonzalez JT, Green BP, Campbell MC, Rumbold PL, Stevenson EJ. The influence of calcium supplementation on substrate metabolism during exercise in humans: a randomized controlled trial. Eur J Clin Nutr. 2014;68(6):712–718. doi: 10.1038/ejcn.2014.41.
    1. Mortensen K, Christensen LL, Holst JJ, Orskov C. GLP-1 and GIP are colocalized in a subset of endocrine cells in the small intestine. Regul Pept. 2003;114(2–3):189–196. doi: 10.1016/S0167-0115(03)00125-3.
    1. Fordtran JS, Locklear TW. Ionic constituents and osmolality of gastric and small-intestinal fluids after eating. Am J Dig Dis. 1966;11(7):503–521. doi: 10.1007/BF02233563.
    1. Thomas SD, Need AG, Tucker G, Slobodian P, O’Loughlin PD, Nordin BE. Suppression of parathyroid hormone and bone resorption by calcium carbonate and calcium citrate in postmenopausal women. Calcif Tissue Int. 2008;83(2):81–84. doi: 10.1007/s00223-008-9148-z.
    1. Green JH, Booth C, Bunning R. Postprandial metabolic responses to milk enriched with milk calcium are different from responses to milk enriched with calcium carbonate. Asia Pac J Clin Nutr. 2003;12(1):109–119.
    1. Ma J, Bellon M, Wishart JM, Young R, Blackshaw LA, Jones KL, Horowitz M, Rayner CK. Effect of the artificial sweetener, sucralose, on gastric emptying and incretin hormone release in healthy subjects. Am J Physiol Gastrointest Liver Physiol. 2009;296(4):G735–G739. doi: 10.1152/ajpgi.90708.2008.
    1. Compher C, Frankenfield D, Keim N, Roth-Yousey L, Evidence Analysis Working G. Best practice methods to apply to measurement of resting metabolic rate in adults: a systematic review. J Am Diet Assoc. 2006;106(6):881–903. doi: 10.1016/j.jada.2006.02.009.
    1. Edinburgh RM, Hengist A, Smith HA, Betts JA, Thompson D, Walhin JP, Gonzalez JT. Prior exercise alters the difference between arterialised and venous glycaemia: implications for blood sampling procedures. Br J Nutr. 2017;117(10):1414–1421. doi: 10.1017/S0007114517001362.
    1. Deacon CF, Holst JJ. Immunoassays for the incretin hormones GIP and GLP-1. Best Pract Res Clin Endocrinol Metab. 2009;23(4):425–432. doi: 10.1016/j.beem.2009.03.006.
    1. Bak MJ, Wewer Albrechtsen NJ, Pedersen J, Knop FK, Vilsboll T, Jorgensen NB, Hartmann B, Deacon CF, Dragsted LO, Holst JJ. Specificity and sensitivity of commercially available assays for glucagon-like peptide-1 (GLP-1): implications for GLP-1 measurements in clinical studies. Diabetes Obes Metab. 2014;16(11):1155–1164. doi: 10.1111/dom.12352.
    1. Betts JA, Thompson D. Thinking outside the bag (not necessarily outside the lab) Med Sci Sports Exerc. 2012;44(10):2040. doi: 10.1249/mss.0b013e318264526f.
    1. Flint A, Raben A, Blundell JE, Astrup A. Reproducibility, power and validity of visual analogue scales in assessment of appetite sensations in single test meal studies. Int J Obes Relat Metab Disord. 2000;24(1):38–48. doi: 10.1038/sj.ijo.0801083.
    1. Anderson GH, Catherine NL, Woodend DM, Wolever TM. Inverse association between the effect of carbohydrates on blood glucose and subsequent short-term food intake in young men. Am J Clin Nutr. 2002;76(5):1023–1030. doi: 10.1093/ajcn/76.5.1023.
    1. Luttikhold J, van Norren K, Rijna H, Buijs N, Ankersmit M, Heijboer AC, Gootjes J, Hartmann B, Holst JJ, van Loon LJ, van Leeuwen PA. Jejunal feeding is followed by a greater rise in plasma cholecystokinin, peptide YY, glucagon-like peptide 1, and glucagon-like peptide 2 concentrations compared with gastric feeding in vivo in humans: a randomized trial. Am J Clin Nutr. 2016;103(2):435–443. doi: 10.3945/ajcn.115.116251.
    1. Hutchison AT, Feinle-Bisset C, Fitzgerald PC, Standfield S, Horowitz M, Clifton PM, Luscombe-Marsh ND. Comparative effects of intraduodenal whey protein hydrolysate on antropyloroduodenal motility, gut hormones, glycemia, appetite, and energy intake in lean and obese men. Am J Clin Nutr. 2015;102(6):1323–1331. doi: 10.3945/ajcn.115.114538.
    1. Conigrave AD, Quinn SJ, Brown EM. L-amino acid sensing by the extracellular Ca2+-sensing receptor. Proc Natl Acad Sci USA. 2000;97(9):4814–4819. doi: 10.1073/pnas.97.9.4814.
    1. Hutchison AT, Piscitelli D, Horowitz M, Jones KL, Clifton PM, Standfield S, Hausken T, Feinle-Bisset C, Luscombe-Marsh ND. Acute load-dependent effects of oral whey protein on gastric emptying, gut hormone release, glycemia, appetite, and energy intake in healthy men. Am J Clin Nutr. 2015;102(6):1574–1584. doi: 10.3945/ajcn.115.117556.
    1. Giezenaar C, Trahair LG, Luscombe-Marsh ND, Hausken T, Standfield S, Jones KL, Lange K, Horowitz M, Chapman I, Soenen S. Effects of randomized whey-protein loads on energy intake, appetite, gastric emptying, and plasma gut-hormone concentrations in older men and women. Am J Clin Nutr. 2017;106(3):865–877. doi: 10.3945/ajcn.117.154377.
    1. Laferrere B, Heshka S, Wang K, Khan Y, McGinty J, Teixeira J, Hart AB, Olivan B. Incretin levels and effect are markedly enhanced 1 month after Roux-en-Y gastric bypass surgery in obese patients with type 2 diabetes. Diabetes Care. 2007;30(7):1709–1716. doi: 10.2337/dc06-1549.
    1. Asmar A, Asmar M, Simonsen L, Madsbad S, Holst JJ, Hartmann B, Sorensen CM, Bulow J. Glucagon-like peptide-1 elicits vasodilation in adipose tissue and skeletal muscle in healthy men. Physiol Rep. 2017 doi: 10.14814/phy2.13073.
    1. Chen YC, Edinburgh RM, Hengist A, Smith HA, Walhin JP, Betts JA, Thompson D, Gonzalez JT. Venous blood provides lower GLP-1 concentrations than arterialised blood in the postprandial, but not fasted state: consequences of sampling methods. Exp Physiol. 2018;103(9):1200–1205. doi: 10.1113/EP087118.
    1. Adibi SA, Mercer DW. Protein digestion in human intestine as reflected in luminal, mucosal, and plasma amino acid concentrations after meals. J Clin Investig. 1973;52(7):1586–1594. doi: 10.1172/JCI107335.
    1. Acheson KJ, Blondel-Lubrano A, Oguey-Araymon S, Beaumont M, Emady-Azar S, Ammon-Zufferey C, Monnard I, Pinaud S, Nielsen-Moennoz C, Bovetto L. Protein choices targeting thermogenesis and metabolism. Am J Clin Nutr. 2011;93(3):525–534. doi: 10.3945/ajcn.110.005850.
    1. Wynne K, Park AJ, Small CJ, Meeran K, Ghatei MA, Frost GS, Bloom SR. Oxyntomodulin increases energy expenditure in addition to decreasing energy intake in overweight and obese humans: a randomised controlled trial. Int J Obes. 2006;30(12):1729–1736. doi: 10.1038/sj.ijo.0803344.
    1. Hofmeyr GJ, Seuc AH, Betrán AP, Purnat TD, Ciganda A, Munjanja SP, Manyame S, Singata M, Fawcus S, Frank K, Harr DR, Cormick G, Roberts JM, Bergel EF, Drebit SK, Von Dadelszen P, Belizan JM, Group CaP-eS The effect of calcium supplementation on blood pressure in non-pregnant women with previous pre-eclampsia: an exploratory, randomized placebo controlled study. Pregnancy Hypertens. 2015;5(4):273–279. doi: 10.1016/j.preghy.2015.04.001.
    1. Fekete ÁA, Giromini C, Chatzidiakou Y, Givens DI, Lovergrove JA. Whey protein lowers systolic blood pressure and Ca-caseinate reduces serum TAG after a high-fat meal in mildly hypertensive adults. Sci Rep. 2018;8(1):5026. doi: 10.1038/s41598-018-23333-2.

Source: PubMed

3
Prenumerera